Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Water-free way to make MXenes could mean new uses for the promising nanomaterials: Discovery by Drexel researchers could open new application for MXene materials

Drexel University researchers have developed a way to produce the promising 2D nanomaterials, MXenes, without using water. This allows the materials to be used for applications like energy storage and solar cells, where the presence of water could degrade performance.

CREDIT
Drexel University
Drexel University researchers have developed a way to produce the promising 2D nanomaterials, MXenes, without using water. This allows the materials to be used for applications like energy storage and solar cells, where the presence of water could degrade performance. CREDIT Drexel University

Abstract:
Ten years after producing the first sample of the now widely studied family of nanomaterials, called MXenes, Drexel University researchers have discovered a different way to make the atom-thin material that presents a number of new opportunities for using it. The new discovery removes water from the MXene-making process, which means the materials can be used in applications in which water is a contaminant or hampers performance, such as battery electrodes and next-generation solar cells.

Water-free way to make MXenes could mean new uses for the promising nanomaterials: Discovery by Drexel researchers could open new application for MXene materials

Philadelphia, PA | Posted on March 13th, 2020

The discovery, which was reported recently in the journal Chem, offers a new recipe for the chemical etching solution that carves away layers from a ceramic precursor material, called MAX phase, to create the two-dimensional layered material, MXene.

"Water has been used in the MXene-making processes to dilute the etching acid and as a solvent to neutralize the reaction, but it is not always desirable to have traces of it in the finished product," said Michel Barsoum, PhD, Distinguished professor in Drexel's College of Engineering. "We have been working for some time to explore other etchants for the MAX P-phase and now we have found just the right combination of chemicals to do it."

MXenes have gained attention recently as a versatile, durable, conductive material that could one day improve energy storage technology, enable functional textiles and improve telecommunications.

Typically, they are produced by using a concentrated acid, to carve away atomic layers from a MAX phase material, then washed with water - leaving flakes of the 2D layered material that can be pressed into thin films for microchips and battery electrodes, or used to spray paint antennas and coat devices to block electromagnetic interference.

The process reported by Barsoum and his colleagues uses an organic solvent and ammonium dihydrogen fluoride - a chemical commonly used to etch glass - to etch the MAX phase. This solution does the etching, in part because it breaks down into hydrofluoric acid, but it does not require water to dilute it or to wash away the by-products of the etching process.

Making MXenes in this way alters their interior chemical structure in a way that makes them better suited for use in some types of batteries and solar cells - where water could slow the chemical reactions that store and/or convert energy, or in some cases even cause corrosion.

"MXenes have shown tremendous potential for improving energy storage devices, but this discovery makes them even more promising," said Varun Natu, a doctoral researcher in Drexel's College of Engineering and first author of the paper. "It is known that even slight presence of water in lithium or sodium ion batteries using organic electrolytes, can be detrimental to their performance. In this work we show that MXene films synthesized in propylene carbonate - when tested as anodes in a sodium ion battery - exhibit nearly double the capacity of the same composition etched in water. In addition, MXenes can now easily be integrated with materials which degrade in water, like certain polymers, quantum dots and perovskites."

In addition to better equipping MXenes for these applications, and others yet to be explored, the new process also allows the etching solution to be recovered and reused. This could prove valuable as researchers and companies look into the most efficient way to scale up the production process.

Researchers involved with this work, including Vibha Kalra, PhD, an associate professor in the College of Engineering, have been exploring ways to improve battery performance and safety by developing new types of electrodes. This discovery could bring new options to bear in these efforts, as well as growing Drexel's body of MXene research.

"This finding opens up a huge new field of research: Non-aqueous etching of MXenes. We believe that this work will prove useful not only to the MXene community, but also to researchers throughout the field material science," Barsoum said.

####

For more information, please click here

Contacts:
Britt Faulstick

215-895-2617

@DrexelNews

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

2 Dimensional Materials

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

News and information

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Perovskites

Getting through the bottleneck—A new class of layered perovskite with high oxygen-ion conductivity April 29th, 2020

FSU researchers discover new structure for promising class of materials April 24th, 2020

Argonne scientists fashion new class of X-ray detector: New perovskite-based detectors can sense X-rays over a broad energy range. April 24th, 2020

Self-powered X-ray detector to revolutionize imaging for medicine, security and research: 2D perovskite thin films boost sensitivity 100-fold compared to conventional detectors, require no outside power source, and enable low-dose dental and medical images April 12th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

Thin films

New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments April 17th, 2020

Self-powered X-ray detector to revolutionize imaging for medicine, security and research: 2D perovskite thin films boost sensitivity 100-fold compared to conventional detectors, require no outside power source, and enable low-dose dental and medical images April 12th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

Possible Futures

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Discoveries

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

A stitch in time: How a quantum physicist invented new code from old tricks: Error suppression opens pathway to universal quantum computing May 22nd, 2020

Materials/Metamaterials

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Announcements

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Energy

Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes May 14th, 2020

Transporting energy through a single molecular nanowire: Why single wires are superior to bundles May 8th, 2020

Scientists have created new nanocomposite from gold and titanium oxide: Scientists use lasers and gold particles to turn titanium oxide into nanocomposite for photocatalysts May 8th, 2020

Water-splitting module a source of perpetual energy: ‘Artificial leaf’ concept inspires Rice University research into solar-powered fuel production May 4th, 2020

Water

Two is better than one: Scientists fit two co-catalysts on one nanosheet for better water purification April 16th, 2020

Electric jolt to carbon makes better water purifier March 24th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Nexeon Appoints New Chairman May 18th, 2020

2D oxide flakes pick up surprise electrical properties: Rice University lab detects piezoelectric effects in nanosheets due to defects May 7th, 2020

A new study published on the cover of Science could bolster the development of batteries, fuel cells, 3D printing technologies and more May 1st, 2020

Quantum Dots/Rods

FSU researchers discover new structure for promising class of materials April 24th, 2020

Development of new photovoltaic commercialization technology: The cause for efficiency degradation in an actual operating environment has been identified, with proposal of material processing method for improving performance stability April 10th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti and Partners Demo Potentially Scalable Readout System for Large Arrays of Quantum Dots: Results Hold promise for Fast, Accurate Single-Shot Readout ‘Of Foundry-Compatible Si MOS Spin Qubits’ December 12th, 2019

Solar/Photovoltaic

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Transporting energy through a single molecular nanowire: Why single wires are superior to bundles May 8th, 2020

Scientists have created new nanocomposite from gold and titanium oxide: Scientists use lasers and gold particles to turn titanium oxide into nanocomposite for photocatalysts May 8th, 2020

Water-splitting module a source of perpetual energy: ‘Artificial leaf’ concept inspires Rice University research into solar-powered fuel production May 4th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project