Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Water-free way to make MXenes could mean new uses for the promising nanomaterials: Discovery by Drexel researchers could open new application for MXene materials

Drexel University researchers have developed a way to produce the promising 2D nanomaterials, MXenes, without using water. This allows the materials to be used for applications like energy storage and solar cells, where the presence of water could degrade performance.

CREDIT
Drexel University
Drexel University researchers have developed a way to produce the promising 2D nanomaterials, MXenes, without using water. This allows the materials to be used for applications like energy storage and solar cells, where the presence of water could degrade performance. CREDIT Drexel University

Abstract:
Ten years after producing the first sample of the now widely studied family of nanomaterials, called MXenes, Drexel University researchers have discovered a different way to make the atom-thin material that presents a number of new opportunities for using it. The new discovery removes water from the MXene-making process, which means the materials can be used in applications in which water is a contaminant or hampers performance, such as battery electrodes and next-generation solar cells.

Water-free way to make MXenes could mean new uses for the promising nanomaterials: Discovery by Drexel researchers could open new application for MXene materials

Philadelphia, PA | Posted on March 13th, 2020

The discovery, which was reported recently in the journal Chem, offers a new recipe for the chemical etching solution that carves away layers from a ceramic precursor material, called MAX phase, to create the two-dimensional layered material, MXene.

"Water has been used in the MXene-making processes to dilute the etching acid and as a solvent to neutralize the reaction, but it is not always desirable to have traces of it in the finished product," said Michel Barsoum, PhD, Distinguished professor in Drexel's College of Engineering. "We have been working for some time to explore other etchants for the MAX P-phase and now we have found just the right combination of chemicals to do it."

MXenes have gained attention recently as a versatile, durable, conductive material that could one day improve energy storage technology, enable functional textiles and improve telecommunications.

Typically, they are produced by using a concentrated acid, to carve away atomic layers from a MAX phase material, then washed with water - leaving flakes of the 2D layered material that can be pressed into thin films for microchips and battery electrodes, or used to spray paint antennas and coat devices to block electromagnetic interference.

The process reported by Barsoum and his colleagues uses an organic solvent and ammonium dihydrogen fluoride - a chemical commonly used to etch glass - to etch the MAX phase. This solution does the etching, in part because it breaks down into hydrofluoric acid, but it does not require water to dilute it or to wash away the by-products of the etching process.

Making MXenes in this way alters their interior chemical structure in a way that makes them better suited for use in some types of batteries and solar cells - where water could slow the chemical reactions that store and/or convert energy, or in some cases even cause corrosion.

"MXenes have shown tremendous potential for improving energy storage devices, but this discovery makes them even more promising," said Varun Natu, a doctoral researcher in Drexel's College of Engineering and first author of the paper. "It is known that even slight presence of water in lithium or sodium ion batteries using organic electrolytes, can be detrimental to their performance. In this work we show that MXene films synthesized in propylene carbonate - when tested as anodes in a sodium ion battery - exhibit nearly double the capacity of the same composition etched in water. In addition, MXenes can now easily be integrated with materials which degrade in water, like certain polymers, quantum dots and perovskites."

In addition to better equipping MXenes for these applications, and others yet to be explored, the new process also allows the etching solution to be recovered and reused. This could prove valuable as researchers and companies look into the most efficient way to scale up the production process.

Researchers involved with this work, including Vibha Kalra, PhD, an associate professor in the College of Engineering, have been exploring ways to improve battery performance and safety by developing new types of electrodes. This discovery could bring new options to bear in these efforts, as well as growing Drexel's body of MXene research.

"This finding opens up a huge new field of research: Non-aqueous etching of MXenes. We believe that this work will prove useful not only to the MXene community, but also to researchers throughout the field material science," Barsoum said.

####

For more information, please click here

Contacts:
Britt Faulstick

215-895-2617

@DrexelNews

Copyright © Drexel University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Perovskites

A sunny outlook for solar: New research demonstrates great promise of all-inorganic perovskite solar cells for improving the efficiencies of solar cells October 15th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Perovskite solar cells: Interfacial loss mechanisms revealed August 20th, 2021

A universal intercalation strategy for high-stable perovskite photovoltaics: Researchers at Kanazawa University demonstrate that the use of CsI intercalation technology greatly passivate defects, subsequently improve device performance. This technology may encourage a more widesp August 6th, 2021

News and information

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

2 Dimensional Materials

Two-dimensional hybrid metal halide device allows control of terahertz emissions October 1st, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Rice physicists find 'magnon' origins in 2D magnet: Topological feature could prove useful for encoding information in electron spins September 3rd, 2021

Thin films

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Scientists discover spin polarization induced by shear flow October 1st, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Discoveries

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Materials/Metamaterials

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Energy

A sunny outlook for solar: New research demonstrates great promise of all-inorganic perovskite solar cells for improving the efficiencies of solar cells October 15th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Cheaper hydrogen production: Efficient water and urea electrolysis with bimetallic yolk-shell nanoparticles September 10th, 2021

Water

Water as a metal July 30th, 2021

Researchers develop new graphene nanochannel water filters January 22nd, 2021

Controlling the nanoscale structure of membranes is key for clean water, researchers find January 1st, 2021

Ultra-fast gas flows through tiniest holes in 2D membranes: Researchers from the National Graphene Institute at the University of Manchester and the University of Pennsylvania identify ultra-fast gas flows through atomic-scale apertures in 2D membrane and validate a century-old e December 18th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

A materials passport for greener batteries: Research project is investigating more environmentally friendly manufacturing and recycling processes October 15th, 2021

New study shows how to power electronics using mechanical motion: Researchers develop a composite film that can be used in nanogenerators to generate electricity from mechanical motion October 1st, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Polymer electrolytes for all-solid-state batteries without dead zones August 20th, 2021

Quantum Dots/Rods

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

‘Missing jigsaw piece’: engineers make critical advance in quantum computer design August 20th, 2021

Pushing the boundaries of colloidal quantum dots by making their sizes equal: Scientists demonstrate the relationship between optoelectronic performance and size uniformity in perovskite colloidal quantum dots June 25th, 2021

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

Solar/Photovoltaic

A sunny outlook for solar: New research demonstrates great promise of all-inorganic perovskite solar cells for improving the efficiencies of solar cells October 15th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

The National Space Society Joins the Progressive Policy Institute in Supporting Rapid Development of Space Solar Power: Orbiting Solar Power Stations Would Help to Save the Environment August 20th, 2021

Harnessing sunlight to fuel the future through covalent organic frameworks: Scientists underscore the potential of a new class of materials to convert sunlight to fuel August 13th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project