Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > A scaffold at the center of our cellular skeleton: UNIGE researchers have discovered a new nano-structure that lies at the center of our cellular skeleton; this discovery will allow to better understand how the cell maintains its architecture as well as the pathologies associated

Schematic view of the nano-cylinder (fuchsia) which is in the center of the cell skeleton (in black on the image).

CREDIT
 UNIGE
Schematic view of the nano-cylinder (fuchsia) which is in the center of the cell skeleton (in black on the image). CREDIT UNIGE

Abstract:
All animal cells have an organelle called a centrosome, which is essential to the organization of their cell skeleton. The centrosome plays fundamental roles, especially during cell division, where it allows equal sharing of genetic information between two daughter cells. When the cells stop dividing, the centrioles, cylindrical structures composed of microtubules at the base of the centrosome, migrate to the plasma membrane and allow the formation of primary and mobile cilia, which are used respectively for the transfer of information and the genesis of movement. While performing these crucial biological functions, centrioles are therefore subjected to many physical forces, which they must resist. Scientists from the University of Geneva (UNIGE) have discovered an internal structure at the center of these nano-cylinders, a real cellular scaffolding that maintains the physical integrity of this organelle. This study, published in the journal Science Advances, will provide a better understanding of the functions of the centriole and the pathologies associated with its dysfunction.

A scaffold at the center of our cellular skeleton: UNIGE researchers have discovered a new nano-structure that lies at the center of our cellular skeleton; this discovery will allow to better understand how the cell maintains its architecture as well as the pathologies associated

Geneva, Switzerland | Posted on February 21st, 2020

The centrioles, cylindrical nano-structures, form the centrosome, the main microtubule organizing center of the cell skeleton, and the cilia, real cellular antennas. Defects in the assembly or functioning of the centriole can lead to pathologies in humans, such as ciliopathies, retinal disorders that can cause loss of vision.

Super-powered microscopes

Centrioles, formed by microtubules, are components of the cell skeleton. "They have a canonical organization defined by nine triplets of microtubules that must be maintained as a structural unit in order to resist the various forces they face during their cellular functions, explains Paul Guichard, Professor in the Department of Cell Biology of the Faculty of Science at UNIGE. The group of Paul Guichard and Virginie Hamel, a researcher at the Department of Cell Biology and co-leader of the study, discovered an internal scaffolding for this organelle using high-powered electron microscopes, in collaboration with researchers at the University of Basel and the Helmholtz Campus in Neuherberg, Germany. "This study allowed to analyze centrioles of four different species and to demonstrate that this inner scaffold is present systematically", reports Maeva Le Guennec, a UNIGE researcher and first author of the study.

"We then investigated which centriolar proteins were located in this new structure", says Virginie Hamel. To do this, the UNIGE researchers used an innovative super-resolution method, called expansion microscopy, which makes it possible to inflate cells without deforming them in order to observe their internal organization. Thus, they were able to identify four proteins that are located at the level of this inner scaffold.

Towards a better understanding of retinal degeneration

"We realized that the four proteins we identified are associated with pathologies related to retinal degeneration", notes Virginie Hamel. The loss of retinal photoreceptors is possibly due to a failure to maintain the microtubule doublets present in these specialized cells. "We now intend to discover the possible link between such a structural maintenance defect and retinal disorders, in order to pave the way for a better understanding of this pathology", concludes Paul Guichard.

####

For more information, please click here

Contacts:
Paul Guichard

41-223-796-750

@UNIGEnews

Copyright © UNIGE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Possible Futures

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Nanomedicine

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment March 20th, 2020

Tokai scientists create the world's first electronic skin-based sensor for heatstroke detection March 17th, 2020

March 17th, 2020

Discoveries

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Announcements

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project