Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors

The team conducted an experiment in which they observed the material while controlling the number of electrons, leading them to discover changes in the properties of FGT. The team proved that the magnetic anisotropy, which describes how the material's magnetic properties change depending on the direction, contributed to such changes.

CREDIT
Korea Institute of Science and Technology (KIST)
The team conducted an experiment in which they observed the material while controlling the number of electrons, leading them to discover changes in the properties of FGT. The team proved that the magnetic anisotropy, which describes how the material's magnetic properties change depending on the direction, contributed to such changes. CREDIT Korea Institute of Science and Technology (KIST)

Abstract:
Drs. Chaun Jang, Jun Woo Choi, and Hyejin Ryu of the Korea Institute of Science and Technology (KIST, President Lee Byung Gwon) have announced that their team at KIST's Center for Spintronics successfully controlled the magnetic properties of FGT (Fe3GeTe2) in a joint research project with Dr. Se Young Park and his team at the Center for Correlated Electron Systems at the Institute for Basic Science (IBS). Fe3GeTe2 has recently attracted attention as a material for next-generation spintronic semiconductors.

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors

Sejong, Korea | Posted on February 14th, 2020

*Named by combining the terms "spin" and "electronics," "spintronics" is a new field in electronic engineering that aims to replace conventional silicon semiconductors by utilizing electron spin, a quantum property of electrons.

Van der Waals materials, also known as two-dimensional (2D) materials, are layered materials composed of planes that are attached to each other via a weak van der Waals interaction. These include various materials such as graphene and molybdenum disulfide. When combined with other 2D materials, they can create new materials that show previously undiscovered properties. This is why 2D materials, which have a variety of properties, such as superconductivity, semi-conductivity, and metallicity have been the subject of so many studies.

In 2017, 2D van der Waals materials that show magnetic properties were discovered, stimulating research projects and studies all around the world. However, most van der Waals magnetic materials have some constraints in terms of spintronics application because of their low Curie temperature** and high coercivity,*** making them unsuitable for use in certain devices.

** Curie temperature: a transition temperature point where a ferromagnetic material changes to a paramagnetic one or vice versa.

*** Coercivity: the intensity of magnetic field required to reduce the magnetic flux density of a ferromagnetic material to zero after the magnetism of that material has been saturated.

A number of studies have been done on FGT, a recently discovered van der Waals material with a layered structure. The joint KIST-IBS research team discovered an efficient scheme for controlling the properties of FGT. The team conducted an experiment in which they observed the material while controlling the number of electrons, leading them to discover changes in the properties of FGT. The team proved that the magnetic anisotropy,**** which describes how the material's magnetic properties change depending on the direction, contributed to such changes.

**** Magnetic anisotropy: This refers to the directional dependence of a material's magnetic properties on a crystallographic or geometric structure. Depending on such structures, a material can have easy or hard magnetization directions.

The research results revealed the origin of the changes in the FGT magnetic properties, thus presenting a possible method of efficiently controlling the properties of 2D magnetic materials. Furthermore, the research team announced that by potentially controlling the properties of single-atom-thick van der Waals magnetic materials, the development of spintronic devices which operate 100-times faster than current silicon-based electronic device, could be accelerated.

Dr. Hyejin Ryu of KIST said, "We started this study to discover the magnetic properties of van der Waals materials and apply such properties to spintronic devices." She added, "Further development of new materials for semiconductors with various properties will be possible through the use of van der Waals magnetic materials and other van der Waals materials based heterostructures."

###

This major KIST research project was conducted with the support of the Ministry of Science and ICT (Minister Choi Kiyoung) as part of the Creative Convergence Research Project (CAP) for the purpose of laying the foundation for global, cross-border cooperation. This work was also supported by the US DOE-BES (Lawrence Berkeley National Lab), and the Division of Materials Science and Engineering (Brookhaven National Lab). The research results were published in the most recent issue of Nano Letters (IF:12.279, JCR Rank: 5.743%).

####

For more information, please click here

Contacts:
Kim, Do-Hyun

82-295-86344

Copyright © National Research Council of Science & Technology(NST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Laboratories

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

Govt.-Legislation/Regulation/Funding/Policy

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Possible Futures

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Spintronics

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

Paving the way for spintronic RAMs: A deeper look into a powerful spin phenomenon December 27th, 2019

How to induce magnetism in graphene: Elusive molecule predicted in the 1970s finally synthesized December 11th, 2019

Chip Technology

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

A new way to fine-tune exotic materials: Thin, stretch and clamp: Turning a brittle oxide into a flexible membrane and stretching it on a tiny apparatus flipped it from a conducting to an insulating state and changed its magnetic properties April 2nd, 2020

Compact Model Developed at CEA-Leti for FD-SOI Technologies Designated as a Chip-Industry Standard: ‘This Is of Paramount Importance for Large Chipmakers And Positions CEA-Leti Among the Few Compact-Model Developer Teams Able to Develop and Support a Standard Model’ April 1st, 2020

Discoveries

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Announcements

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Research partnerships

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Carbon nanotubes forecast when vegetables spoil and buds bloom April 2nd, 2020

A pigment from ancient Egypt to modern microscopy: Göttingen research team produces new nanosheets for near infrared imaging March 23rd, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project