Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A quantum of solid

Scientists from Vienna, Kahan Dare (left) and Manuel Reisenbauer (right) working on the experiment that cooled a levitated nanoparticle to its motional quantum groundstate.

CREDIT
© Lorenzo Magrini, Yuriy Coroli/University of Vienna
Scientists from Vienna, Kahan Dare (left) and Manuel Reisenbauer (right) working on the experiment that cooled a levitated nanoparticle to its motional quantum groundstate. CREDIT © Lorenzo Magrini, Yuriy Coroli/University of Vienna

Abstract:
It is well known that quantum properties of individual atoms can be controlled and manipulated by laser light. Even large clouds of hundreds of millions of atoms can be pushed into the quantum regime, giving rise to macroscopic quantum states of matter such as quantum gases or Bose-Einstein condensates, which nowadays are also widely used in quantum technologies. An exciting next step is to extend this level of quantum control to solid state objects. In contrast to atomic clouds, the density of a solid is a billion times higher and all atoms are bound to move together along the object's center of mass. In that way, new macroscopic quantum states involving large masses should become possible.

A quantum of solid

Vienna, Austria | Posted on February 1st, 2020

However, entering this new regime is not at all a straightforward endeavour. A first step for achieving such quantum control is to isolate the object under investigation from influences of the environment and to remove all thermal energy - by cooling it down to temperatures very close to absolute zero (-273.15 °C) such that quantum mechanics dominates the particle's motion. To show this the researchers chose to experiment with a glass bead approximately a thousand times smaller than a typical grain of sand and containing a few hundred million atoms. Isolation from the environment is achieved by optically trapping the particle in a tightly focused laser beam in high vacuum, a trick that was originally introduced by Nobel laureate Arthur Ashkin many decades ago and that is also used for isolating atoms. "The real challenge is for us to cool the particle motion into its quantum ground state. Laser cooling via atomic transitions is well established and a natural choice for atoms, but it does not work for solids", says lead-author Uros Delic from the University of Vienna.

For this reason, the team has been working on implementing a laser-cooling method that was proposed by Austrian physicist Helmut Ritsch at the University of Innsbruck and, independently, by study co-author Vladan Vuletic and Nobel laureate Steven Chu. They had recently announced a first demonstration of the working principle, "cavity cooling by coherent scattering", however they were still limited to operating far away from the quantum regime. "We have upgraded our experiment and are now able not only to remove more background gas but also to send in more photons for cooling", says Delic. In that way, the motion of the glass bead can be cooled straight into the quantum regime. "It is funny to think about this: the surface of our glass bead is extremely hot, around 300°C, because the laser heats up the electrons in the material. But the motion of the center of mass of the particle is ultra-cold, around 0.00001°C away from absolute zero, and we can show that the hot particle moves in a quantum way."

The researchers are excited about the prospects of their work. The quantum motion of solids has also been investigated by other groups all around the world, along with the Vienna team. Thus far, experimental systems were comprised of nano- and micromechanical resonators, in essence drums or diving boards that are clamped to a rigid support structure. "Optical levitation brings in much more freedom: by changing the optical trap - or even switching it off - we can manipulate the nanoparticle motion in completely new ways", says Nikolai Kiesel, co-author and Assistant Professor at the University of Vienna. Several schemes along these lines have been proposed, amongst others by Austrian-based physicists Oriol Romero-Isart and Peter Zoller at Innsbruck, and may now become possible. For example, in combination with the newly achieved motional ground state the authors expect that this opens new opportunities for unprecedented sensing performance, the study of fundamental processes of heat engines in the quantum regime, as well as the study of quantum phenomena involving large masses. "A decade ago we started this experiment motivated by the prospect of a new category of quantum experiments. We finally have opened the door to this regime."

####

For more information, please click here

Contacts:
Markus Aspelmeyer

43-142-777-2531

@univienna

Copyright © University of Vienna

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication in Science: Deli?, U, Reisenbauer, M, Dare, K, Grass, D, Vuleti?, V, Kiesel, N & Aspelmeyer, M; "Cooling of a Levitated Nanoparticle to the Motional Quantum Ground Stat" DOI: 10.1126/science.aba3993:

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Quantum Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project