Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum physics: On the way to quantum networks

Picture of the single atom trap. In the ultra-high vacuum glass cell a single Rubidium atom is captured, which later will be entangled with a photon. Photo: C. Olesinski/LMU
Picture of the single atom trap. In the ultra-high vacuum glass cell a single Rubidium atom is captured, which later will be entangled with a photon. Photo: C. Olesinski/LMU

Abstract:
Physicists at Ludwig-Maximilians-Universitaet (LMU) in Munich, together with colleagues at Saarland University, have successfully demonstrated the transport of an entangled state between an atom and a photon via an optic fiber over a distance of up to 20 km - thus setting a new record.

Quantum physics: On the way to quantum networks

Munich, Germany | Posted on January 24th, 2020

'Entanglement' describes a very particular type of quantum state which is not attributed to a single particle alone, but which is shared between two different particles. It irrevocably links their subsequent fates together - no matter how far apart they are - which famously led Albert Einstein to call the phenomenon as "spooky action at a distance". Entanglement has become a cornerstone of new technologies based on effects at the quantum level and is distribution over long distances a central goal in quantum communication. Now LMU researchers led by physicist Harald Weinfurter, in collaboration with a team at the University of the Saarland in Saarbrücken, have shown that the entangled state of an atom and a photon can be transmitted via an optic fiber (like those used in telecommunications networks) over a distance of up to 20 km. The previous record was 700 meters. "The experiment represents a milestone, insofar as the distance covered confirms that quantum information can be distributed on a large scale with little loss," says Weinfurter. "Our work therefore constitutes a crucial step toward the future realization of quantum networks."

Quantum networks essentially consist of quantum memories (made up of one or more atoms, for example) that act as nodes, and communication channels in which photons (light quanta) can propagate to link the nodes together. In their experiment, the researchers entangled a rubidium atom with a photon, and were able to detect the entangled state - which now shares the quantum properties of both particles - after its passage through a 20-km coil of optic fiber.

The biggest problem the experimenters faced start with the properties of the rubidium atom. Following targeted excitation, these atoms emit photons with a wavelength of 780 nanometers, in the near-infrared region of the spectrum. "In an optic fiber made of glass, light at this wavelength is rapidly absorbed," Weinfurter explains. Conventional telecommunications networks therefore make use of wavelengths around 1550 nanometers, which markedly reduces losses in transit.

Obviously, this wavelength would also improve the experimenters' chances of success. So Matthias Bock, a member of the group in Saarbrücken, built what is called a quantum frequency converter that was specifically designed to increase the wavelength of the emitted photons from 780 to 1520 nanometers. This task itself posed a number of extremely demanding technical challenges. For it was imperative to ensure that conversion from only a single photon to only one other photon happens and that none of the other properties of the entangled state, especially the polarization of the photon, were altered during the conversion process. Otherwise, the entangled state would be lost. "Thanks to the use of this highly efficient converter, we were able to maintain the entangled state over a much longer range at telecommunications wavelengths, and therefore to transport the quantum information that it carries over long distances," says Weinfurter.

In the next step, the researchers plan to frequency convert the light emitted by a second atom, which should enable them to generate entanglement between the two atoms over long telecommunications fibers. The properties of glass-fiber cables vary depending on factors such as the temperature and strain to which they are exposed. For this reason, the team intends to first carry out this experiment under controlled conditions in the laboratory. In the event of success, field experiments will be undertaken also adding new nodes to a growing network. After all, even long journeys can be successfully completely by taking one step at a time.

####

For more information, please click here

Contacts:
Kathrin Bilgeri

089-218-06938

Copyright © Ludwig-Maximilians-Universität München (LMU)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Wireless/telecommunications/RF/Antennas/Microwaves

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

Quantum Physics

CEA-Leti Clears a Path to Developing Ultralow Loss, High-Power Photonics in UV through Mid-Infrared Wavelengths ‘Breakthrough Will Lead to Quantum Computing, Imaging, Sensing, Communication, and Clocks’ February 3rd, 2020

A quantum of solid February 1st, 2020

How supercomputers are helping us link quantum entanglement to cold coffee February 1st, 2020

Physics

A quantum of solid February 1st, 2020

How supercomputers are helping us link quantum entanglement to cold coffee February 1st, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

Quantum communication

How supercomputers are helping us link quantum entanglement to cold coffee February 1st, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Possible Futures

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Discoveries

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate: Scientists in Korea are first to observe an unprecedented way in which graphene forms a hybrid layer that prevents copper corrosion February 14th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Announcements

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate: Scientists in Korea are first to observe an unprecedented way in which graphene forms a hybrid layer that prevents copper corrosion February 14th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project