Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Molecular factories: The combination between nature and chemistry is functional

In molecular factories injected into zebrafish embryos, a colour reaction occurs when the trapped enzyme (peroxidase) is working. The researchers thus prove that the combination of synthetic organelles and natural vesicles also works in the living organism.
In molecular factories injected into zebrafish embryos, a colour reaction occurs when the trapped enzyme (peroxidase) is working. The researchers thus prove that the combination of synthetic organelles and natural vesicles also works in the living organism.

Abstract:
Researchers at the University of Basel have succeeded in developing molecular factories that mimic nature. To achieve this they loaded artificial organelles inside micrometer-sized natural blisters (vesicles) produced by cells. These molecular factories remain intact even after injection into an animal model and demonstrate no toxicity, as the team report in the scientific journal Advanced Science.

In molecular factories injected into zebrafish embryos, a color reaction occurs when the trapped enzyme (peroxidase) is working. The researchers thus prove that the combination of synthetic organelles and natural vesicles also works in the living organism.

CREDIT University of Basel

Molecular factories: The combination between nature and chemistry is functional

Basel, Switzerland | Posted on January 10th, 2020

Within the cells, the actual biological factories, the molecules of life are assembled. The assembly lines of cells are small compartments called organelles, where a large variety of chemical reactions take place either inside or between them. For medical applications, molecular factories acting as artificial cells would ideally beused - to produce missing or required molecules or drugs.

Soft, synthetic capsules

Collaboration between the Department of Chemistry at the University of Basel, the Swiss Nanoscience Institute, and the NCCR Molecular Systems Engineering made the successful development of such molecular factories possible. First, researchers led by Professor Cornelia Palivan and Professor Wolfgang Meier designed artificial organelles, that is distinct compartments of cells. They loaded these soft, synthetic capsules with enzymes and equipped them with membrane proteins that act like "gates". These gates allow molecules involved in the enzymatic reaction to enter and leave the capsule.

Subsequently, the natural cells were feed with these artificial organelles. After stimulation, the cells produced natural micrometer-size vesicles. These possess a natural cell membrane and cytoplasm, enclose the artificial organelles and can therefore function as a molecular factory.

Zebra fish embryos as an animal model

The molecular factories were injected into zebra fish embryos by researchers from the group led by Professor JŲrg Huwyler (Pharmazentrum of the University of Basel). In this animal model, they produced the desired compound, which was catalyzed by the enzyme in the artificial organelle. The viability of the animal was not compromised by the injection.

"This combination of natural vesicles and small synthetic organelles is what makes the molecular factory: Reactions that take place inside produce an end product, as also happens inside cells," explain Dr. Tomaz Einfalt and Dr. Martina Garni, first authors of the paper.

Within the molecular factories, multiple components can be made and assembled into the end product. The biosynthetic vesicles can also transfer components from one cell to the other. Different molecular factories can be combined so that complex structures with high functionality can be created - the first step toward producing artificial cells in the laboratory or in living organisms.

####

For more information, please click here

Contacts:
Reto Caluori

41-612-072-495

@UniBasel_en

Copyright © University of Basel

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Chemistry

Toward safer disposal of printed circuit boards January 16th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites donít need liquid water to work January 14th, 2020

Gasification goes green: Rice's low-temp photocatalyst could slash the carbon footprint for syngas January 10th, 2020

Clusters of gold atoms form peculiar pyramidal shape January 3rd, 2020

Possible Futures

Let the europium shine brighter January 21st, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanomedicine

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites donít need liquid water to work January 14th, 2020

A New Old Therapy: A controlled phage therapy can target drug-resistant bacteria while sidestepping potential unintended consequences January 13th, 2020

Copper-based nanomaterials can kill cancer cells in mice January 10th, 2020

Tech company NANOBIOTIX announces late-stage registration trial and global development plan for 2020 January 8th, 2020

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Nanobiotechnology

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

A New Old Therapy: A controlled phage therapy can target drug-resistant bacteria while sidestepping potential unintended consequences January 13th, 2020

Copper-based nanomaterials can kill cancer cells in mice January 10th, 2020

Tech company NANOBIOTIX announces late-stage registration trial and global development plan for 2020 January 8th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project