Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Buckyballs release electron-positron pairs in forward directions: Theoretical calculations reveal that when impacted by positrons of particular energies, spherical nanoparticles release unstable electron-positron pairs, with signals dominating in the same direction as the incomin

Impacting positrons release positronium from C60.

CREDIT
Benjah-bmm27, public domain.
Impacting positrons release positronium from C60. CREDIT Benjah-bmm27, public domain.

Abstract:
When electrons collide with positrons, their antimatter counterparts, unstable pairs can form in which both types of particle orbit around each other. Named 'positronium', physicists have now produced this intriguing structure using a diverse range of positron targets - from atomic gases to metal films. However, they have yet to achieve the same result from vapours of nanoparticles, whose unique properties are influenced by the 'gases' of free electrons they contain in well-defined, nanoscopic regions. In new research published in EPJ D, Paul-Antoine Hervieux at the University of Strasbourg, France and Himadri Chakraborty at Northwest Missouri State University, USA, reveal the characteristics of positronium formation within football-shaped nanoparticles, C60, for the first time. At specific positron impact energies, they show that positronium emission dominates in the same direction as the incoming antiparticles.

Buckyballs release electron-positron pairs in forward directions: Theoretical calculations reveal that when impacted by positrons of particular energies, spherical nanoparticles release unstable electron-positron pairs, with signals dominating in the same direction as the incomin

Heidelberg, Germany | Posted on December 27th, 2019

Commonly known as buckminsterfullerene, or 'buckyballs', C60 is stable, easily synthesised and sustainable at room temperatures. Thanks to these useful properties, Hervieux and Chakraborty's findings could have important implications for fields including astrophysics, materials physics, and pharmaceutical research. In particular, they could offer improvements in tests of how antimatter responds to gravity, which can involve structures including dipositronium and antihydrogen atoms; each of which feature positronium in the first steps of their fabrication processes.

When positrons of certain energies approach buckyballs at angles of up to 10 degrees, the physicists showed that a series of narrow, forward-facing positronium signals resulted from the 'diffraction resonance' of the particles. The effect is comparable to how light is diffracted by microscopic spherical obstructions; showing variation with larger fullerene molecules like C240, and when particles are excited to higher energy levels. Hervieux and Chakraborty modelled these properties through theoretical calculations of how diffraction resonance affected the angles over which positronium is emitted, as a function of positron impact energy. Their results offer important insights for the wide variety of researchers who use these short-lived structures. In future studies, the duo now hopes to further explore their potential for use in real experiments.

###

Reference: P-A Hervieux, H.S. Chakraborty (2019), Strongly resolved diffraction resonances in positronium formation from C60 in forward direction, Eur. Phys. J. D (2019), DOI

####

For more information, please click here

Contacts:
Sabine Lehr

49-622-144-878-336

@SpringerNature

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Physics

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Possible Futures

Let the europium shine brighter January 21st, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanotubes/Buckyballs/Fullerenes/Nanorods

The first highway trials show that nanotube-reinforced asphalt concrete prevents cracks and ruts January 16th, 2020

A new approach to making airplane parts, minus the massive infrastructure: Carbon nanotube film produces aerospace-grade composites with no need for huge ovens or autoclaves. January 13th, 2020

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

The first nanotube applications award honors the scientist revolutionizing Li-ion batteries December 17th, 2019

Discoveries

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Materials/Metamaterials

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

FEFU scientists participate in development of ceramic materials that are IR-transparent December 27th, 2019

New polymer material may help batteries become self-healing, recyclable December 23rd, 2019

From 3D to 2D and back: Reversible conversion of lipid spheres into ultra-thin sheets December 20th, 2019

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project