Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists create thin films with tantalizing electronic properties: As predicted by theorists, experiments show that barium zirconium sulfide thin films hold great promise for solar cells, LEDs

A barium zirconium sulfide thin film created by the research team.

CREDIT
Credit: Douglas Levere / University at Buffalo
A barium zirconium sulfide thin film created by the research team. CREDIT Credit: Douglas Levere / University at Buffalo

Abstract:
Scientists have created thin films made from barium zirconium sulfide (BaZrS3) and confirmed that the materials have alluring electronic and optical properties predicted by theorists.

Scientists create thin films with tantalizing electronic properties: As predicted by theorists, experiments show that barium zirconium sulfide thin films hold great promise for solar cells, LEDs

Buffalo, NY | Posted on December 27th, 2019

The films combine exceptionally strong light absorption with good charge transport -- two qualities that make them ideal for applications such as photovoltaics and light-emitting diodes (LEDs).

In solar panels, for example, experimental results suggest that BaZrS3 films would be much more efficient at converting sunlight into electricity than traditional silicon-based materials with identical thicknesses, says lead researcher Hao Zeng, PhD, professor of physics in the University at Buffalo College of Arts and Sciences. This could lower solar energy costs, especially because the new films performed admirably even when they had imperfections. (Manufacturing nearly flawless materials is typically more expensive, Zeng explains.)

"For many decades, there have been only a handful of semiconductor materials that have been used, with silicon being the dominant material," Zeng says. "Our thin films open the door to a new direction in semiconductor research. There's a chance to explore the potential of a whole new class of materials."

The study was published in November in the journal Nano Energy.

UB physics PhD students Xiucheng Wei and Haolei Hui were the first authors. The project -- funded by a U.S. Department of Energy (DOE) SunShot award and National Science Foundation (NSF) Sustainable Chemistry, Engineering and Materials award -- included contributions from researchers at UB; Taiyuan Normal University, Southern University of Science & Technology, Xi'an Jiaotong University and the Chinese Academy of Sciences, all in China; Los Alamos National Laboratory; and Rensselaer Polytechnic Institute.

Experiments inspired by theoretical predictions

BaZrS3 belongs to a category of materials known as chalcogenide perovskites, which are nontoxic, earth-abundant compounds. In recent years, theorists have calculated that various chalcogenide perovskites should exhibit useful electronic and optical properties, and these predictions have captured the interest and imagination of experimentalists like Zeng.

BaZrS3 is not a totally new material. Zeng looked into the history of the compound, and found information dating back to the 1950s.

"It has existed for more than half a century," he says. "Among earlier research, a company in Niagara Falls produced it in powder form. I think people paid little attention to it."

But thin films -- not powder -- are needed for applications such as photovoltaics and LEDs, so that's what Zeng's team set out to create.

The researchers crafted their BaZrS3 films by using a laser to heat up and vaporize barium zirconium oxide. The vapor was deposited on a sapphire surface, forming a film, and then converted into the final material through a chemical reaction called sulfurization.

"Semiconductor research has traditionally been highly focused on conventional materials," Hui says. "This is an opportunity to explore something new. Chalcogenide perovskites share some similarities to the widely researched halide perovskites, but do not suffer from the toxicity and instability of the latter materials."

"Now that we have a thin film made from BaZrS3, we can study its fundamental properties and how it might be used in solar panels, LEDs, optical sensors and other applications," Wei says.

###

In addition to the NSF and DOE SunShot program, the research received support from the National Natural Science Foundation of China and the U.S. National Nuclear Security Administration's Laboratory Directed Research & Development program.

####

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

@UBNewsSource

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project