Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods

Abstract:
Made up of 2D sheets of carbon atoms arranged in honeycomb lattices, graphene has been intensively studied in recent years. As well as the material's diverse structural properties, physicists have paid particular attention to the intriguing dynamics of the charge carriers its many variants can contain. The mathematical techniques used to study these physical processes have proved useful so far, but they have had limited success in explaining graphene's 'critical temperature' of superconductivity, below which its' electrical resistance drops to zero. In a new study published in EPJ B, Jacques Tempere and colleagues at the University of Antwerp in Belgium demonstrate that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods

Heidelberg, Germany | Posted on December 13th, 2019

The team's insights could allow physicists to understand more about the widely varied properties of graphene; potentially aiding the development of new technologies. Typically, the approach they used in the study is used to calculate critical temperatures in conventional superconductors. In this case, however, it was more accurate than current techniques in explaining how critical temperatures are suppressed with lower densities of charge carriers, as seen in pure, single-layer graphene. In addition, it proved more effective in modelling the conditions which give rise to interacting pairs of electrons named 'Cooper pairs', which strongly influence the electrical properties of the material.

Tempere's team made their calculations using the 'dielectric function method' (DFM), which accounts for the transfer of heat and mass within materials when calculating critical temperatures. Having demonstrated the advantages of the technique, they now suggest that it could prove useful for future studies aiming to boost and probe for superconductivity in single and bilayer graphene. As graphene research continues to be one of the most diverse, fast-paced fields in materials physics, the use of DFM could better equip researchers to utilise it for ever more advanced technological applications.

####

For more information, please click here

Contacts:
Sabine Lehr


@SpringerNature

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Graphene/ Graphite

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Superconductivity

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

A new step in the search for room-temperature superconductors May 27th, 2022

Quantum ‘shock absorbers’ allow perovskite to exhibit superfluorescence at room temperature April 1st, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project