Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Silver improves the efficiency of monograin layer solar cells

Next-generation lightweight flexible monograin layer solar cell developed by TalTech researchers.
CREDIT
Professor Jüri Krustok
Next-generation lightweight flexible monograin layer solar cell developed by TalTech researchers. CREDIT Professor Jüri Krustok

Abstract:
As a result of their two-year joint project, the materials researchers of Tallinn University of Technology have improved the efficiency of next generation solar cells by partial substitution of copper with silver in absorber material.

Silver improves the efficiency of monograin layer solar cells

Tartu, Estonia | Posted on December 12th, 2019

Economic development and the general growth in energy consumption have led to an increased demand for environmentally friendly energy production at lower cost. Most viable solutions can be found in the renewable energy sector. New technologies for energy production should provide clean, low cost, environmentally friendly solutions with versatile applications, making solar energy the best solution today. TalTech's material researchers are working on the development of the next-generation photovoltaics - monograin layer solar cells.

Senior Researcher at TalTech Laboratory of Photovoltaic Materials Marit Kauk-Kuusik says, "The production of traditional silicon solar cells that started back in the 1950s is still very resource and energy consuming. Our research is focused on the development of the next generation of solar cells, i.e. thin-film solar cells based on compound semiconductors."

A thin-film solar cell consists of several thin layers of semiconductor materials. For efficient thin film solar cells, semiconductor with very good light-absorbing properties must be used as absorber. Silicon absorber is not suitable candidate for thin film solar cells due to non-optimal light absorption leading to rather thick absorber layer. TalTech researchers are developing compound semiconductor materials named kesterites (Cu2ZnSn(Se,S)4), which in addition to excellent light absorption contain earth abundant and low cost chemical elements (e.g. copper, zinc , tin, sulphur and selenium). To produce kesterites, TalTech researchers use a monograin powder technology, which is unique in the world.

"The monograin powder technology we are developing differs from other similar solar cell manufacturing technologies used in the world in terms of its method. Compared to vacuum evaporation or sputtering technologies, which are widely used to produce thin-film structures, the monograin powder technology is less expensive," Marit Kauk-Kuusik says.

Powder growth technology is the process of heating chemical components in a special chamber furnace at 750 degrees for four days. Thereafter the mass obtained is washed and sieved in special machines. The synthesized high-quality microcrystalline powder, monograin powder, is used for the production of solar cells. The powder technology differs from other production methods in particular due to its low cost, since it does not require any expensive high vacuum equipment.

The monograin powder consists of unique microcrystals that form parallel connected miniature solar cells in a large module (covered with an ultra-thin buffer layer). This, however, provides major advantages over the photovoltaic modules of the previous generation, i.e. silicon-based solar panels: the photovoltaics cells are lightweight, flexible, can be transparent, while being environmentally friendly and significantly less expensive.

The indicator of the quality of photovoltaics is the efficiency. Efficiency depends not only on the properties of the materials used and the structure of the solar cell, but also on solar radiation intensity, angle of incidence and temperature.

The ideal conditions for achieving the maximum efficiency are in cold sunny mountains, not in a hot desert, as one would expect, because heat does not improve solar cell's efficiency. It is possible to calculate the maximum theoretical efficiency for each solar panel, which, unfortunately, has so far been impossible to achieve in reality, but it is an objective to pursue.

"We have reached the point in our development where partial replacement of copper with silver in kesterite absorber materials can increase efficiency by 2%. This is because copper is highly mobile in nature, causing unstable solar cell efficiency. The replacement of 1% copper with silver improved the efficiency of monograin layer solar cells from 6.6% to 8.7%," Marit Kauk-Kuusik says.

The two TalTech's groups of material researchers: photovoltaic materials and optoelectronic materials physics research groups published an article "The effect of Ag alloying of Cu2(Zn,Cd)SnS4 on the monograin powder properties and solar cell performance" in a high-quality scientific journal "Journal of Materials Chemistry A".

The monograin layer solar cell technology is implemented by the Estonian-Austrian joint venture Crystalsol GmbH. In order to commercialize the photovoltaic technology developed by our researchers, the solar cell efficiency should be increased to 15%.

####

For more information, please click here

Contacts:
Marit Kauk-Kuusik

372-556-88092

Kersti Vähi, TalTech Research Administration Office

Copyright © Estonian Research Council

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Source: 08.10.2019 Journal of Materials Chemistry A:

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Possible Futures

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Discoveries

When Dirac meets frustrated magnetism August 3rd, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Materials/Metamaterials

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys' strength-ductility trade-off and thermal instability July 24th, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Energy

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

'Blinking" crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

Membrane technology could cut emissions and energy use in oil refining July 17th, 2020

Graphene: It is all about the toppings: To fully exploit the potential of the'wonder material' graphene, it has to be combined with other materials July 10th, 2020

Solar/Photovoltaic

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Printed perovskite LEDs: An innovative technique towards a new standard process of electronics manufacturing June 12th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project