Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > How to induce magnetism in graphene: Elusive molecule predicted in the 1970s finally synthesized

3D-rendered high-resolution scanning tunneling micrograph of Clar’s goblet. Image: Empa
3D-rendered high-resolution scanning tunneling micrograph of Clar’s goblet. Image: Empa

Abstract:
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties - for example, they may ex-hibit conducting, semiconducting or insulating behavior. However, one property has so far been elusive: magnetism. Together with colleagues from the Technical University in Dresden, Aalto University in Finland, Max Planck Institute for Polymer Research in Mainz and University of Bern, Empa researchers have now succeeded in building a nanogra-phene with magnetic properties that could be a decisive component for spin-based elec-tronics functioning at room temperature.

How to induce magnetism in graphene: Elusive molecule predicted in the 1970s finally synthesized

Dübendorf, Switzerland | Posted on December 11th, 2019

Graphene consists only of carbon atoms, but magnetism is a property hardly associated with carbon. So how is it possible for carbon nanomaterials to exhibit magnetism? To un-derstand this, we need to take a trip into the world of chemistry and atomic physics.

The carbon atoms in graphene are arranged in a honeycomb structure. Each carbon atom has three neighbors, with which it forms alternating single or double bonds. In a single bond, one electron from each atom - a so-called valence electron - binds with its neigh-bor; while in a double bond, two electrons from each atom participate. This alternating single and double bond representation of organic compounds is known as the Kekulé structure, named after the German chemist August Kekulé who first proposed this repre-sentation for one of the simplest organic compound, benzene (Figure 1). The rule here is that electron pairs inhabiting the same orbital must differ in their direction of rotation - the so-called spin - a consequence of the quantum mechanical Pauli's exclusion princi-ple.

"However, in certain structures made of hexagons, one can never draw alternating single and double bond patterns that satisfy the bonding requirements of every carbon atom. As a consequence, in such structures, one or more electrons are forced to remain unpaired and cannot form a bond," explains Shantanu Mishra, who is researching novel nanogra-phenes in the Empa laboratory headed by Roman Fasel. This phe-nomenon of involuntary unpairing of electrons is called "topological frustration".

But what does this have to do with magnetism? The answer lies in the "spins" of the elec-trons. The rotation of an electron around its own axis causes a tiny magnetic field, a mag-netic moment. If, as usual, there are two electrons with opposite spins in an orbital of an atom, these magnetic fields cancel each other. If, however, an electron is alone in its or-bital, the magnetic moment remains - and a measurable magnetic field results.

This alone is fascinating. But in order to be able to use the spin of the electrons as circuit elements, one more step is needed. One answer could be a structure that looks like a bow tie under a scanning tunneling microscope.

Two frustrated electrons in one molecule

Back in the 1970s, the Czech chemist Erich Clar, a distinguished expert in the field of nanographene chemistry, predicted a bow tie-like structure known as "Clar's goblet" (Fig-ure 1). It consists of two symmetrical halves and is constructed in such a way that one electron in each of the halves must remain topologically frustrated. However, since the two electrons are connected via the structure, they are antiferromagnetically coupled - that is, their spins necessarily orient in opposite directions.

In its antiferromagnetic state, Clar's goblet could act as a "NOT" logic gate: if the direction of the spin at the input is reversed, the output spin must also be forced to rotate.

However, it is also possible to bring the structure into a ferromagnetic state, where both spins orient along the same direction. To do this, the structure must be excited with a cer-tain energy, the so-called exchange coupling energy, so that one of the electrons reverses its spin.

In order for the gate to remain stable in its antiferromagnetic state, however, it must not spontaneously switch to the ferromagnetic state. For this to be possible, the exchange coupling energy must be higher than the energy dissipation when the gate is operated at room temperature. This is a central prerequisite for ensuring that a future spintronic cir-cuit based on nanographenes can function faultlessly at room temperature.

From theory to reality

So far, however, room-temperature stable magnetic carbon nanostructures have only been theoretical constructs. For the first time, the researchers have now succeeded in pro-ducing such a structure in practice, and showed that the theory does correspond to reali-ty. "Realizing the structure is demanding, since Clar's goblet is highly reactive, and the synthesis is complex," explains Mishra. Starting from a precursor molecule, the researchers were able to realize Clar's goblet in ultrahigh vacuum on a gold surface, and experimen-tally demonstrate that the molecule has exactly the predicted properties.

Importantly, they were able to show that the exchange coupling energy in Clar's goblet is relatively high at 23 meV, implying that spin-based logic operations could therefore be stable at room temperature. "This is a small but important step toward spintronics," says Roman Fasel.

####

For more information, please click here

Contacts:
Karin Weinmann

41-587-654-708

@Empa_CH

Further information
Shantanu Mishra

Phone +41 58 765 4839


Prof. Dr. Roman FaseL
Head of Laboratory
Phone +41 58 765 4348

Copyright © EMPA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum Physics

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

Graphene/ Graphite

Buckyballs on gold are less exotic than graphene July 22nd, 2022

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Magnetism/Magnons

‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022

'Frustrated' nanomagnets order themselves through disorder: Interactions between alternating layers of exotic, 2D material create 'entropy-driven order' in a structured system of magnets at equilibrium April 8th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Terahertz light-driven spin-lattice control: A new potential path to faster and more efficient data storage January 7th, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Spintronics

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Magnet-free chiral nanowires for spintronic devices March 18th, 2022

NGI advances graphene spintronics as 1D contacts improve mobility in nano-scale devices February 11th, 2022

Chip Technology

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Materials/Metamaterials

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Quantum nanoscience

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project