Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > A record-setting transistor: Engineering professor designs transistor that could enable cheaper, faster wireless communications

Professor Yuping Zeng (right) and graduate student Peng Cui have worked on designs for transistors that could enable cheaper, faster wireless communications.

CREDIT
Photo by Kathy F. Atkinson
Professor Yuping Zeng (right) and graduate student Peng Cui have worked on designs for transistors that could enable cheaper, faster wireless communications. CREDIT Photo by Kathy F. Atkinson

Abstract:
Many of the technologies we rely on, from smartphones to wearable devices and more, utilize fast wireless communications. What might we accomplish if those devices transmitted information even faster?

A record-setting transistor: Engineering professor designs transistor that could enable cheaper, faster wireless communications

Newark, DE | Posted on November 29th, 2019

That's what Yuping Zeng, assistant professor of electrical and computer engineering at the University of Delaware, aims to discover. She and a team of researchers recently created a high-electron mobility transistor, a device that amplifies and controls electrical current, using gallium nitride (GaN) with indium aluminum-nitride as the barrier on a silicon substrate. They described their results in the journal Applied Physics Express.

Among devices of its type, Zeng's transistor has record-setting properties, including record low gate leakage current (a measure of current loss), a record high on/off current ratio (the magnitude of the difference of current transmitted between the on state and off state) and a record high current gain cutoff frequency (an indication of how much data can be transmitted with a wide range of frequencies).

This transistor could be useful for higher bandwidth wireless communication systems. For a given current, it can handle more voltage and would require less battery life than other devices of its type.

"We are making this high-speed transistor because we want to expand the bandwidth of wireless communications, and this will give us more information for a certain limited time," said Zeng. "It can also be used for space applications because the gallium nitride transistor we used is radiation robust, and it is also wide bandgap material, so it can tolerate a lot of power."

This transistor represents innovation in both material design and device application design. The transistors are made on a low-cost silicon substrate, "and this process can also be compatible with silicon Complementary metal-oxide-semiconductor (CMOS) technology, which is the conventional technology used for semiconductors," said Zeng.

The transistor described in the recent paper was just the first of many to come.

"We are trying to continue to break our own record, both for the low power application as well as for the high-speed application," said Zeng. The team also plans to use their transistors to make power amplifiers that could be particularly useful for wireless communications as well as other internet-of-things.

Zeng's group is also working on titanium oxide transistors which are transparent and could be used for backplane displays, competing with the technology for currently commercially used indium-gallium-zinc oxide (InGaZnO) transistors.

Dennis Prather, Engineering Alumni Professor of Electrical and Computer Engineering, was a co-author on the Applied Physics Express paper.

"With the era of 5G upon us, it's very exciting to see Professor Zeng's record setting transistors as a leading contribution to this field," he said. "Her research is world renowned and the ECE Department is very lucky to have her on its faculty. To this end, 5G is ushering in a wave of new technologies in nearly every aspect of mobile communications and wireless networks, to have UD's ECE department at the leading edge, with Professor Zeng's outstanding research, is truly a wonderful thing."

###

Several UD Delaware units helped Zeng's group set their new record. The group fabricated their device in the UD Nanofabrication Facility. Postdoctoral scholar Peng Cui, the first author on the new Applied Physics Express paper, has received funding through the Horn Entrepreneurship Postdoctoral Innovation Fellow program and the Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Peter Kerwin

302-831-8749

@UDResearch

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Report:

Related News Press

News and information

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Wireless/telecommunications/RF/Antennas/Microwaves

At CES 2020, CEA-Leti Will Demo System that Eliminates Interference in LiFi Networks: System from CEA-Leti Detects Interference And Optimizes Data Transmission Rates for Each Nearby Device December 20th, 2019

Tiny magnetic particles enable new material to bend, twist, and grab December 13th, 2019

CCNY physicists score double hit in LED research September 27th, 2019

Internet-of-Things

GLOBALFOUNDRIES and Racyics GmbH Demonstrate Ultra-Low-Power Microcontroller for the Internet of Things: Record silicon results to be presented tomorrow at GTC 2019 in Munich, made possible by the adaptive body biasing capability on GFs 22FDX platform, along with Racyics IP October 11th, 2019

GLOBALFOUNDRIES Brings New Level of Security and Protection on 22FDX Platform for Connected Systems:22FDX security solution aims to protect against physical tampering and attacks for cellular Internet of Things (IoT) devices October 11th, 2019

Sticker makes nanoscale light manipulation easier to manufacture August 27th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Possible Futures

Let the europium shine brighter January 21st, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Chip Technology

Toward safer disposal of printed circuit boards January 16th, 2020

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

NUS scientists create worlds first monolayer amorphous film January 9th, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

Discoveries

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Military

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites dont need liquid water to work January 14th, 2020

A new approach to making airplane parts, minus the massive infrastructure: Carbon nanotube film produces aerospace-grade composites with no need for huge ovens or autoclaves. January 13th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Gasification goes green: Rice's low-temp photocatalyst could slash the carbon footprint for syngas January 10th, 2020

Jill Tarter named 2019 Lifeboat Foundation Guardian Award Winner January 2nd, 2020

Scientists create thin films with tantalizing electronic properties: As predicted by theorists, experiments show that barium zirconium sulfide thin films hold great promise for solar cells, LEDs December 27th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project