Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies

Abstract:
Bacteria in the lab of Prof. Ron Milo of the Weizmann Institute of Science have not just sworn off sugar – they have stopped eating all of their normal solid food, existing instead on carbon dioxide (CO2) from their environment. That is, they were able to build all of their biomass from air. This feat, which involved nearly a decade of rational design, genetic engineering and a sped-up version of evolution in the lab, was reported this week in Cell. The findings point to means of developing, in the future, carbon-neutral fuels.

The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies

Rehovot, Israel | Posted on November 27th, 2019

The study began by identifying crucial genes for the process of carbon fixation – the way plants take carbon from CO2 for the purpose of turning it into such biological molecules as protein, DNA, etc. The research team added and rewired the needed genes. They found that many of the “parts” for the machinery that were already present in the bacterial genome could be used as is. They also inserted a gene that allowed the bacteria to get energy from a readily available substance called formate that can be produced directly from electricity and air and which is apt to “give up” electrons to the bacteria.

Just giving the bacteria the “means of production” was not enough, it turned out, for them to make the switch. There was still a need for another trick to get the bacteria to use this machinery properly, and this involved a delicate balancing act. Together with Roee Ben-Nissan, Yinon Bar-On and other members of Milo’s team in the Institute’s Plant and Environmental Sciences Department, Gleizer used lab evolution, as the technique is known; in essence, the bacteria were gradually weaned off the sugar they were used to eating. At each stage, cultured bacteria were given just enough sugar to keep them from complete starvation, as well as plenty of CO2 and formate. As some “learned” to develop a taste for CO2 (giving them an evolutionary edge over those that stuck to sugar), their descendants were given less and less sugar until after about a year of adapting to the new diet some of them eventually made the complete switch, living and multiplying in an environment that served up pure CO2.

To check whether the bacteria were not somehow “snacking” on other nutrients, some of the evolved E. coli were fed CO2 containing a heavy isotope – C13. Then the bacterial body parts were weighed, and the weight they had gained checked against the mass that would be added from eating the heavier version of carbon. The analysis showed the carbon atoms in the body of the bacteria were all extracted directly from CO2 alone.

The research team then set out to characterize the newly-evolved bacteria. What changes were essential to adapting to this new diet? While some of the genetic changes they identified may have been tied to surviving hunger, others appeared to regulate the synchronization of the steps of making building blocks through accumulation from CO2. “The cell needs to balance between toxic congestion and bankruptcy,” says Bar-On. Yet other changes the team noted had to do with transcription – regulating how existing genes are turned on and off. “Further research will hopefully uncover exactly how these genes have adjusted their activities,” says Ben-Nissan.

The researchers believe that the bacteria’s new “health kick” could ultimately be healthy for the planet. Milo points out that today, biotech companies use cell cultures to produce commodity chemicals. Such cells – yeast or bacteria – could be induced to live on a diet of CO2 and renewable electricity, and thus be weaned from the large amounts of corn syrup they live on today. Bacteria could be further adapted so that rather than taking their energy from a substance such as formate, they might be able to get it straight up -- say electrons from a solar collector – and then store that energy for later use as fuel in the form of carbon fixed in their cells. Such fuel would be carbon-neutral if the source of its carbon was atmospheric CO2.

“Our lab was the first to pursue the idea of changing the diet of a normal heterotroph (one that eats organic substances) to convert it to autotrophism (‘living on air’),” says Milo. “It sounded impossible at first, but it has taught us numerous lessons along the way, and in the end we showed it indeed can be done. Our findings are a significant milestone toward our goal of efficient, green scientific applications.”



Prof. Ron Milo is the Head of the Mary and Tom Beck - Canadian Center for Alternative Energy Research. His research is supported by the Zuckerman STEM Leadership Program; the Larson Charitable Foundation New Scientist Fund; the Ullmann Family Foundation; Dana and Yossie Hollander; and the European Research Council. Prof. Milo is the incumbent of the Charles and Louise Gartner Professorial Chair.

####

About Weizmann Institute of Science
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

For more information, please click here

Contacts:
Yael Edelman

Department of Media Relations
Weizmann Institute of Science
P.O. Box 26, Rehovot 76100
Israel
Tel: 972 8 934 3852

Copyright © Weizmann Institute of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Possible Futures

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Discoveries

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Announcements

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Environment

Research shows old newspapers can be used to grow carbon nanotubes: Newspapers provide a green, economical way to produce carbon nanotubes November 22nd, 2019

NAUM’19 reviewed the increasing contribution of graphene nanotubes to sustainable development November 21st, 2019

Argonne collaborates to review current battery recycling processes for electric vehicles November 8th, 2019

Creating a nanospace like no other: Scientists build a nanocage with antiaromatic walls October 25th, 2019

Energy

Graphene takes off in composites for planes and cars: The Graphene Flagship identified the strategic advantages of integrating graphene into fibre composites, used to build planes and cars December 5th, 2019

'Messy' production of perovskite material increases solar cell efficiency November 15th, 2019

Go with the flow: Scientists design new grid batteries for renewable energy: New blueprint for affordable, sustainable 'flow batteries' developed at Berkeley Lab could accelerate an electrical grid powered by the sun and wind November 8th, 2019

Promising discovery could lead to a better, cheaper solar cell: Scientific instrument made at McGill reveals liquid-like properties of a solid substance November 1st, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

A record-setting transistor: Engineering professor designs transistor that could enable cheaper, faster wireless communications November 29th, 2019

Large scale integrated circuits produced in printing press: All-printed large-scale integrated circuits based on organic electrochemical transistors November 15th, 2019

Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Research partnerships

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Research shows old newspapers can be used to grow carbon nanotubes: Newspapers provide a green, economical way to produce carbon nanotubes November 22nd, 2019

Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project