Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Large scale integrated circuits produced in printing press: All-printed large-scale integrated circuits based on organic electrochemical transistors

Some of the researchers behind the breakthrough: Peter Andersson Ersman, RISE, Simone Fabiano, LiU, Jan Strandberg and Roman Lassnig, RISE.

CREDIT
Thor Balkhed
Some of the researchers behind the breakthrough: Peter Andersson Ersman, RISE, Simone Fabiano, LiU, Jan Strandberg and Roman Lassnig, RISE. CREDIT Thor Balkhed

Abstract:
Researchers at Linköping University and RISE, Campus Norrköping, have shown for the first time that it is possible to print complete integrated circuits with more than 100 organic electrochemical transistors. The result has been published in Nature Communications.

Large scale integrated circuits produced in printing press: All-printed large-scale integrated circuits based on organic electrochemical transistors

Linköping, Sweden | Posted on November 15th, 2019

"This is a decisive step for a technology that was born at Linköping University just over 17 years ago. The result shows that we are again leading the field, thanks to the close collaboration between basic research at the Laboratory of Organic Electronics, LOE, and applied research at RISE", says Magnus Berggren, professor of organic electronics and director of LOE.

"The advantage we have here is that we do not need to mix different manufacturing methods: everything is done by screen printing, and in relatively few processing steps. The key is ensuring that the different layers end up in exactly the right place", says Peter Andersson Ersman, researcher in printed electronics at the RISE research institute.

Printing electronic circuits with a line width of approximately 100 micrometres also places high demands on the print technology, and the printed electronics research has here been aided by the graphics industry. They have developed screen printing frames with meshes that can print extremely fine lines. And many hours of research were needed to develop printing ink with the right properties.

"The research has received funding from many different sources during the past 17 years", Magnus Berggren tells us.

These include the Swedish Foundation for Strategic Research, Vinnova, and the Knut and Alice Wallenberg Foundation, while in recent years the EU has become involved, through the Eureka Eurostars Prolog project.

"The first breakthrough for printed circuits using screen printing came in the Prolog project. We published these results in 2017", Peter Andersson Ersman says.

At least three further challenges have been dealt with since then: reducing the circuit size, increasing the quality such that the probability that all transistors in the circuit work lies as close to 100% as possible, and - not least - solving integration with the silicon-based circuits needed to process signals and to communicate with the surroundings.

"One of the major advances is that we have been able to use printed circuits to create an interface with traditional silicon-based electronic components. We have developed several types of printed circuits based on organic electrochemical transistors. One of these is a shift-register, which can form an interface and deal with the contact between the silicon-based circuit and other electronic components such as sensors and displays. This means that we can now use a silicon chip with fewer contacts, which needs a smaller area and is in this way cheaper", says Magnus Berggren.

The development of ink to print the thin lines and improvements of the screen printing frames have contributed not only to the miniaturisation process, but also to achieving higher quality.

"We can now place more than 1000 organic electrochemical transistors on an A4-sized plastic substrate, and can connect them in different ways to create different types of printed integrated circuits", says Simone Fabiano, head of research in organic nanoelectronics in the Laboratory of Organic Electronics.

These large-scale integrated circuits (abbreviated "LSI") can be used, for example, to power an electrochromic display, itself manufactured as printed electronics, or another part of the online electronic world that the internet of things brings.

The material used by the researchers is the polymer PEDOT:PSS, which is the most deeply studied material in the world in the field of organic electronics.

"This material was commercially available 17 years ago, and it was pure luck that we chose to work with this particular material. We now use the same material in the integrated circuit as in the display, which makes it possible to print more efficiently. We have developed a complete process for printing circuits here at the Printed Electronics Arena in Norrköping", says Magnus Berggren.

####

For more information, please click here

Contacts:
Simone Fabiano

46-113-63633

@liu_universitet

Professor Magnus Berggren

+46 11 36 36 37

Copyright © Linköping University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

All-Printed Large-Scale Integrated Circuits Based on Organic Electrochemical Transistors

Related News Press

News and information

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Organic Electronics

Quantum phenomenon governs organic solar cells: Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes March 30th, 2020

Electrifying science: New study describes conduction through proteins November 1st, 2019

Nanofabrication

O-FIB: Far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment March 20th, 2020

SUWA: A hyperstable artificial protein that does not denature in high temperatures above 100°C February 28th, 2020

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Govt.-Legislation/Regulation/Funding/Policy

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Possible Futures

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Chip Technology

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

A new way to fine-tune exotic materials: Thin, stretch and clamp: Turning a brittle oxide into a flexible membrane and stretching it on a tiny apparatus flipped it from a conducting to an insulating state and changed its magnetic properties April 2nd, 2020

Compact Model Developed at CEA-Leti for FD-SOI Technologies Designated as a Chip-Industry Standard: ‘This Is of Paramount Importance for Large Chipmakers And Positions CEA-Leti Among the Few Compact-Model Developer Teams Able to Develop and Support a Standard Model’ April 1st, 2020

Discoveries

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Announcements

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

A new way to fine-tune exotic materials: Thin, stretch and clamp: Turning a brittle oxide into a flexible membrane and stretching it on a tiny apparatus flipped it from a conducting to an insulating state and changed its magnetic properties April 2nd, 2020

Double-walled nanotubes have electro-optical advantages :Rice University calculations show they could be highly useful for solar panels March 27th, 2020

Electric jolt to carbon makes better water purifier March 24th, 2020

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

No ink needed for these graphene artworks: Artist employs Rice University lab's laser-induced graphene as medium for ultramodern art May 3rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project