Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Cage molecules act as molecular sieves for hydrogen isotope separation

Formation of a cocrystal enhances the D2/H2 separation performance.

CREDIT
University of Liverpool
Formation of a cocrystal enhances the D2/H2 separation performance. CREDIT University of Liverpool

Abstract:
A new hybrid material developed by scientists at the University of Liverpool may bring the dream of carbon-free nuclear fusion power a step closer.

Cage molecules act as molecular sieves for hydrogen isotope separation

Liverpool, UK | Posted on November 1st, 2019

The separation of hydrogen's three isotopes (hydrogen, deuterium, and tritium) is of key importance for fusion power technology, but current technologies are both energy intensive and inefficient. Nanoporous materials have the potential to separate hydrogen isotopes by a process known as kinetic quantum sieving (KQS), but poor performance levels currently prohibit scale up.

In a new study published in Science, researchers at the University of Liverpool's Materials Innovation Factory have created hybrid porous organic cages capable of high-performance quantum sieving that could help advance the deuterium/hydrogen isotope separation technologies needed for fusion power.

Deuterium, also called heavy hydrogen, has a number of commercial and scientific uses, including nuclear power, NMR spectroscopy and pharmacology. These applications need high-purity deuterium, which is expensive because of its low natural abundance. Deuterium enrichment from hydrogen-containing feedstocks, such as seawater, is an important industrial process, but it's costly and energy intensive.

Porous organic cages are an emerging porous material, first reported by Professor Andrew Cooper's group at the University of Liverpool in 2009, which have been used previously for the separation of xylene isomers, noble gases, and chiral molecules.

However, purifying deuterium from hydrogen/deuterium gas mixtures in this way is difficult because both isotopes have the same size and shape at normal conditions. By combining small-pore and large-pore cages together in a single solid, the group has now produced a material with high-quality separation performance that combines an excellent deuterium/hydrogen selectivity with a high deuterium uptake.

The research was led by Professor Andrew Cooper FRS, whose team at the Materials Innovation Factory designed and synthesised the new cage systems. A separate team led by Dr Michael Hirscher at the Max Planck Institute for Intelligent Systems tested the separation performance using cryogenic thermal desorption spectroscopy.

Professor Cooper said: "The separation of hydrogen isotopes are some of the hardest molecular separations known today. The 'Holy Grail' for hydrogen / deuterium separation is to introduce precisely the right pore size to achieve high selectivity without compromising the gas uptake too much."

"Our approach allows extremely delicate tuning of pore size--the entire tunability window for this series of cages spans the diameter a single nitrogen atom--and this ideally suits applications such as KQS."

Lead author Dr Ming Liu added: "While the synthetic approach involves multistep organic synthesis, each step proceeds in close to 100% yield and there is no intermediate purification, so there is good potential to scale these materials up."

Structural studies performed at the UK's Diamond Light Source and the Advanced Light Source in California, enabled the Liverpool team to develop a site selective, solid state reaction, which enabled the pore size of the porous organic cages to be delicately tuned. These studies also enabled the team to design and understand the structure of their best performing material, which combined small-pore and large-pore cages. Co-author Dr Marc Little added: "Data collected at these world leading facilities underpinned our key structural findings and were an integral part of this study."

The mechanistic understanding of the superior performance of these materials was supported by a joint computational effort, led by Dr Linjiang Chen from the Leverhulme Research Centre for Functional Materials Design in the Materials Innovation Factory, also involving theoretical groups from Xi'an JiaoTong-Liverpool University (China) and École Polytechnique Fédérale de Lausanne (Switzerland).

Although the reported material has excellent performance to separate deuterium from hydrogen, the ideal operation temperature is low (30 K). The group is now working on designing a new material that can separate hydrogen isotopes at higher temperatures.

###

The research was supported by EPSRC, the European Research Council, the Leverhulme Trust, and the Chinese Scholarship Council.

####

For more information, please click here

Contacts:
Nicola Frost

Copyright © University of Liverpool

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Physics

Super-strong magnetic supercrystals can assemble themselves October 25th, 2019

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

In a quantum future, which starship destroys the other? Quantum physicists blur the lines of cause and effect, illustrating how a sequence of events can flip and co-exist at the same time August 23rd, 2019

Govt.-Legislation/Regulation/Funding/Policy

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Argonne collaborates to review current battery recycling processes for electric vehicles November 8th, 2019

Go with the flow: Scientists design new grid batteries for renewable energy: New blueprint for affordable, sustainable 'flow batteries' developed at Berkeley Lab could accelerate an electrical grid powered by the sun and wind November 8th, 2019

Possible Futures

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Discoveries

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Thorium superconductivity: Scientists discover a new high-temperature superconductor November 8th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Announcements

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

A distinct spin on atomic transport: Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics November 8th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Energy

Go with the flow: Scientists design new grid batteries for renewable energy: New blueprint for affordable, sustainable 'flow batteries' developed at Berkeley Lab could accelerate an electrical grid powered by the sun and wind November 8th, 2019

New technique lets researchers map strain in next-gen solar cells November 1st, 2019

Promising discovery could lead to a better, cheaper solar cell: Scientific instrument made at McGill reveals liquid-like properties of a solid substance November 1st, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Research partnerships

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Nanoparticle orientation offers a way to enhance drug delivery: Coating particles with 'right-handed' molecules could help them penetrate cancer cells more easily November 5th, 2019

New technique lets researchers map strain in next-gen solar cells November 1st, 2019

Small magnets reveal big secrets: Work by international research team could have wide-ranging impact on information technology applications October 28th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project