Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New technique lets researchers map strain in next-gen solar cells

The thin lines show the grain structure of a perovskite solar cell obtained using a new type of electron backscatter diffraction. Researchers can use a different technique to map sites of high energy loss (dark purple) and low energy loss (yellow).

CREDIT
Jariwala et al., Joule, 2019
The thin lines show the grain structure of a perovskite solar cell obtained using a new type of electron backscatter diffraction. Researchers can use a different technique to map sites of high energy loss (dark purple) and low energy loss (yellow). CREDIT Jariwala et al., Joule, 2019

Abstract:
People can be good at hiding strain, and we're not alone. Solar cells have the same talent. For a solar cell, physical strain within its microscopic crystalline structure can interrupt its core function -- converting sunlight into electricity -- by essentially "losing" energy as heat. For an emerging type of solar cell, known as lead halide perovskites, reducing and taming this loss is key to improving efficiency and putting the perovskites on par with today's silicon solar cells.

New technique lets researchers map strain in next-gen solar cells

Seattle, WA | Posted on November 1st, 2019

In order to understand where strain builds up within a solar cell and triggers the energy loss, scientists must visualize the underlying grain structure of perovskite crystals within the solar cell. But the best approach involves bombarding the solar cell with high-energy electrons, which essentially burns the solar cell and renders it useless.

Researchers from the University of Washington and the FOM Institute for Atomic and Molecular Physics in the Netherlands have developed a way to illuminate strain in lead halide perovskite solar cells without harming them. Their approach, published online Sept. 10 in Joule, succeeded in imaging the grain structure of a perovskite solar cell, showing that misorientation between microscopic perovskite crystals is the primary contributor to the buildup of strain within the solar cell. Crystal misorientation creates small-scale defects in the grain structure, which interrupt the transport of electrons within the solar cell and lead to heat loss through a process known as non-radiative recombination.

"By combining our optical imaging with the new electron detector developed at FOM, we can actually see how the individual crystals are oriented and put together within a perovskite solar cell," said senior author David Ginger, a UW professor of chemistry and chief scientist at the UW-based Clean Energy Institute. "We can show that strain builds up due to the grain orientation, which is information researchers can use to improve perovskite synthesis and manufacturing processes to realize better solar cells with minimal strain -- and therefore minimal heat loss due to non-radiative recombination."

Lead halide perovskites are cheap, printable crystalline compounds that show promise as low-cost, adaptable and efficient alternatives to the silicon or gallium arsenide solar cells that are widely used today. But even the best perovskite solar cells lose some electricity as heat at microscopic locations scattered across the cell, which dampens the efficiency.

Scientists have long used fluorescence microscopy to identify the locations on perovskite solar cells' surface that reduce efficiency. But to identify the locations of defects causing the heat loss, researchers need to image the true grain structure of the film, according to first author Sarthak Jariwala, a UW doctoral student in materials science and engineering and a Clean Energy Institute Graduate Fellow.

"Historically, imaging the solar cell's underlying true grain structure has not been possible to do without damaging the solar cell," said Jariwala.

Typical approaches to view the internal structure utilize a form of electron microscopy called electron backscatter diffraction, which would normally burn the solar cell. But scientists at the FOM Institute for Atomic and Molecular Physics, led by co-authors Erik Garnett and Bruno Ehrler, developed an improved detector that can capture electron backscatter diffraction images at lower exposure times, preserving the solar cell structure.

The images of perovskite solar cells from Ginger's lab reveal a grain structure that resembles a dry lakebed, with "cracks" representing the boundaries among thousands of individual perovskite grains. Using this imaging data, the researchers could for the first time map the 3D orientation of crystals within a functioning perovskite solar cell. They could also determine where misalignment among crystals created strain.

When the researchers overlaid images of the perovskite's grain structure with centers of non-radiative recombination, which Jariwala imaged using fluorescence microscopy, they discovered that non-radiative recombination could also occur away from visible boundaries.

"We think that strain locally deforms the perovskite structure and causes defects," said Ginger. "These defects can then disrupt the transport of electrical current within the solar cell, causing non-radiative recombination -- even elsewhere on the surface."

While Ginger's team has previously developed methods to "heal" some of these defects that serve as centers of non-radiative recombination in perovskite solar cells, ideally researchers would like to develop perovskite synthesis methods that would reduce or eliminate non-radiative recombination altogether.

"Now we can explore strategies like controlling grain size and orientation spread during the perovskite synthesis process," said Ginger. "Those might be routes to reduce misorientation and strain -- and prevent defects from forming in the first place."

###

Co-authors on the paper are Hongyu Sun, Gede Adhyaksa, Adries Lof and Loreta Muscarella with the FOM Institute for Atomic and Molecular Physics. The research was funded by the U.S. Department of Energy, U.S. National Science Foundation, the UW Clean Energy Institute, TKI Urban Energy, the European Research Council and the Dutch Science Foundation.

Grant numbers: DE-SC0013957, DGE-1633216, TEID215022, 337328

####

For more information, please click here

Contacts:
James Urton

206-543-2580

@UW

Ginger at 206-685-2231 or

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Perovskites

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability November 29th, 2019

'Messy' production of perovskite material increases solar cell efficiency November 15th, 2019

Promising discovery could lead to a better, cheaper solar cell: Scientific instrument made at McGill reveals liquid-like properties of a solid substance November 1st, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Possible Futures

Let the europium shine brighter January 21st, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Discoveries

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Energy

Let the europium shine brighter January 21st, 2020

Gasification goes green: Rice's low-temp photocatalyst could slash the carbon footprint for syngas January 10th, 2020

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

Clusters of gold atoms form peculiar pyramidal shape January 3rd, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Gasification goes green: Rice's low-temp photocatalyst could slash the carbon footprint for syngas January 10th, 2020

Jill Tarter named 2019 Lifeboat Foundation Guardian Award Winner January 2nd, 2020

Scientists create thin films with tantalizing electronic properties: As predicted by theorists, experiments show that barium zirconium sulfide thin films hold great promise for solar cells, LEDs December 27th, 2019

Research partnerships

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Solar/Photovoltaic

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

Supercharging tomorrow: Monash develops world's most efficient lithium-sulfur battery January 3rd, 2020

Scientists create thin films with tantalizing electronic properties: As predicted by theorists, experiments show that barium zirconium sulfide thin films hold great promise for solar cells, LEDs December 27th, 2019

Silver improves the efficiency of monograin layer solar cells December 12th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project