Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Extracting hidden quantum information from a light source

The total image or direct intensity image is obtained by the accumulation of light on the camera. With the technique, researchers are able to separate the quantum image of the "dead cat", and then subtract this image to the total image to obtain the classical image of the "alive cat".

CREDIT
 University of Glasgow/ H. Defienne
The total image or direct intensity image is obtained by the accumulation of light on the camera. With the technique, researchers are able to separate the quantum image of the "dead cat", and then subtract this image to the total image to obtain the classical image of the "alive cat". CREDIT University of Glasgow/ H. Defienne

Abstract:
Current super-resolution microscopes or microarray laser scanning technology are known because of their high sensitivities and very good resolutions. However, they implement high light power to study samples, samples that can be light sensitive and thus become damaged or perturbed when illuminated by these devices.

Extracting hidden quantum information from a light source

Barcelona, Spain | Posted on October 25th, 2019

Imaging techniques that employ quantum light are becoming of major importance nowadays, since their capabilities in terms of resolution and sensitivity can surpass classical limitations and, in addition, they do not damage the sample. This is possible because quantum light is emitted in single photons and that uses the property of entanglement to reach lower light intensity regimes.

Now, even though the use of quantum light and quantum detectors has been experimenting a steady development over these last years, there is still a few caveats that need to be solved. Quantum detectors are themselves sensitive to classical noise, noise which may end up being so significant that it can reduce or even cancel out any kind of quantum advantage over the images obtained.

Thus, launched a year ago, the European project Q-MIC has gathered an international team of researchers with different expertise who have come together to develop and implement quantum imaging technologies to create a quantum enhanced microscope that will be able to go beyond capabilities of current microscopy technologies.

In a study recently published in Sciences Advances, researchers Hugo Defienne and Daniele Faccio from the University of Glasgow and partners of the Q-MIC project, have reported on a new technique that uses image distillation to extract quantum information from an illuminated source that contains both quantum and classical information.

In their experiment, the researchers created a combined final image of a "dead" and "alive" cat by using two sources. They used a quantum source trigged by a laser to create entangled pairs of photons, which illuminated a crystal and passed through a filter to produce an infrared image (800nm) of a "dead cat", or what they refer to as the "quantum cat". In parallel, they used a classical source with a LED to produce the image of an "alive cat". Then, with an optical setup, they superimposed both images and sent it to a special CCD camera known as an electron-multiplied charge coupled device (EMCCD).

With this setup, they were able to observe that, in principle, both sources of light have the same spectrum, average intensity, and polarisation making them indistinguishable from a single measurement of the intensity alone. But, while photons that come from the coherent classical source (the LED light) are uncorrelated, the photons that come from the quantum source (photon pairs), are correlated in position.

By using an algorithm, they were able to use these photon correlations in position to isolate the conditional image where two photons arrive at neighbouring pixels on the camera and retrieve the "quantum illuminated" image alone. Consequently, the classical "alive cat" image was also retrieved after subtracting the quantum image from the direct total intensity image.

Another surprising issue from this method is that the researchers were also able to extract reliable quantum information even when the classical illumination was ten times higher. They showed that even when the high classical illumination decreased the quality of the image, they were still able to obtain a sharp image of the shape of quantum image.

This technique opens a new pathway for quantum imaging and quantum enhanced microscopes that aim to observe ultra-sensitive samples. In addition, the results of this study show that this technique could be of utmost importance for quantum communications. The ability to mix and extract specific information carried by both quantum and classical light could be used for encryption techniques and encoding information. In particular, it could be used to hide or encrypt information within a signal when using conventional detectors.

As Prof. Daniele Faccio, comments, "This approach brings a change in the way we are able to encode and then decode information in images, which we hope will find applications in areas ranging from microscopy to covert LIDAR."

####

For more information, please click here

Contacts:
Alina Hirschmann

0034-935-542-246

Copyright © ICFO-The Institute of Photonic Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Quantum image distillation, Hugo Defienne, Matthew Reichert, Jason W. Fleischer and Daniele Faccio, 2019, Science Advances:

Related News Press

News and information

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Quantum Physics

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Quantum physics: On the way to quantum networks January 24th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Imaging

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

Possible Futures

MTU engineers examine lithium battery defects January 28th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Discoveries

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

Quantum physics: On the way to quantum networks January 24th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Old Molecule, New Tricks: Chemistry professors develop an electrochemical method for extracting uranium, and potentially other metal ions, from solution January 24th, 2020

Announcements

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

American Chemical Society names Philip Proteau as new editor-in-chief of the Journal of Natural Products January 24th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

A consensus statement establishes the protocols to study stability of perovskite photovoltaic devices January 24th, 2020

Tools

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

ORNL researchers advance performance benchmark for quantum computers January 3rd, 2020

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

Quantum nanoscience

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Quantum engine operating at maximum power: A new experimental proof-of-concept quantum Otto cycle, using nuclear spins, has reached an efficiency close to its thermodynamic limit at maximum power December 20th, 2019

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

How to induce magnetism in graphene: Elusive molecule predicted in the 1970s finally synthesized December 11th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project