Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers repurpose failed cancer drug into printable semiconductor

Chemical and biomolecular engineering professor Ying Diao and collaborators have repurposed a failed cancer drug into a new type of organic semiconductor for use in transistors and chemical sensors.

Photo by L. Brian Stauffer
Chemical and biomolecular engineering professor Ying Diao and collaborators have repurposed a failed cancer drug into a new type of organic semiconductor for use in transistors and chemical sensors. Photo by L. Brian Stauffer

Abstract:
Many potential pharmaceuticals end up failing during clinical trials, but thanks to new research from the University of Illinois, biological molecules once considered for cancer treatment are now being repurposed as organic semiconductors for use in chemical sensors and transistors.

Researchers repurpose failed cancer drug into printable semiconductor

Champaign, IL | Posted on October 3rd, 2019

The researchers report their findings in the journal Nature Communications.

Organic semiconductors are responsible for things like flexible electronics and transparent solar cells, but researchers are working to expand their use in biomedicine and devices that require interaction between electrically active molecules and biological molecules.

Chemical and biomolecular engineering professor Ying Diao said she was surprised when the two avenues of her research – pharmaceutical development and printable electronics – merged in her lab with the discovery of semiconductorlike features in a well-studied bioactive molecule. The molecule, which inserts itself into DNA to prevent replication, was once explored as a potential anti-cancer agent.

“This convergence of my two research areas was totally unexpected,” Diao said. “While examining these pharmaceutical molecules, we noticed that their molecular structures looked much like the organic semiconductors we were working with in the rest of my group.”

These molecules, called DNA topoisomerase inhibitors, are flat and contain neatly stacked columns of electrically conductive molecular rings – features that make a good semiconductor. Distinct from a typical semiconductor, these molecular columns are linked together by hydrogen bonds that can move charges from column to column, forming bridges that transform the entire molecular assembly into a semiconductor – something rarely seen before this study, the researchers said.

“These molecules can interact with biological material with high specificity, making them good candidates for use in biosensors,” Diao said. “They are also easily printable but will require new solvents because they are chemically different than other organic semiconductors. The fabrication infrastructure is already in place.”

The team printed and tested the semiconductors and acknowledge that their efficiency and performance need improvement. Diao said the real excitement regarding this advance will come from the possibility of discovering similar molecules.

“We envision partnering with researchers in machine learning who can train computers to spot the unique characteristics of these molecules,” Diao said. “They can mine the vast pharmaceutical databases available today in search of molecules with similar, or maybe even better semiconducting properties.”

The Shen Postdoctoral Fellowship of the School of Chemical Sciences at the U. of I. and the National Science Foundation – Illinois Materials Research Science and Engineering Center supported this research.

####

For more information, please click here

Contacts:
Ying Diao
217-300-3505

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Repurposing DNA-binding agents as H-bonded organic semiconductors” is available online and from the U. of I. News Bureau. DOI: 10.1038/s41467-019-12248-9:

Related News Press

News and information

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Organic Electronics

Large scale integrated circuits produced in printing press: All-printed large-scale integrated circuits based on organic electrochemical transistors November 15th, 2019

Electrifying science: New study describes conduction through proteins November 1st, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

New synthesis method opens up possibilities for organic electronics August 7th, 2019

Possible Futures

MTU engineers examine lithium battery defects January 28th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Chip Technology

Toward safer disposal of printed circuit boards January 16th, 2020

Generation and Manipulation of spin currents for advanced electronic devices January 9th, 2020

NUS scientists create world’s first monolayer amorphous film January 9th, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

Sensors

Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Thorium superconductivity: Scientists discover a new high-temperature superconductor November 8th, 2019

Nanoscale manipulation of light leads to exciting new advancement: UNM researchers find decreasing the density of nanoparticles in ordered arrays produces exceptional field enhancements October 11th, 2019

Discoveries

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

Quantum physics: On the way to quantum networks January 24th, 2020

Nano-thin flexible touchscreens could be printed like newspaper: New touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube January 24th, 2020

Old Molecule, New Tricks: Chemistry professors develop an electrochemical method for extracting uranium, and potentially other metal ions, from solution January 24th, 2020

Announcements

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

American Chemical Society names Philip Proteau as new editor-in-chief of the Journal of Natural Products January 24th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

MTU engineers examine lithium battery defects January 28th, 2020

Extraction of lithium from its largest source, i.e. seawater, by nanostructured membranes January 27th, 2020

What if the Universe has no end? The Big Bang is widely accepted as being the beginning of everything we see around us, but other theories that are gathering support among scientists are suggesting otherwise January 25th, 2020

A consensus statement establishes the protocols to study stability of perovskite photovoltaic devices January 24th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project