Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source

An electron microscope image shows an array of thermal light emitters created by Rice University engineers. The emitters are able to deliver highly configurable thermal light. (Credit: The Naik Lab/Rice University)

CREDIT
The Naik Lab/Rice University
An electron microscope image shows an array of thermal light emitters created by Rice University engineers. The emitters are able to deliver highly configurable thermal light. (Credit: The Naik Lab/Rice University) CREDIT The Naik Lab/Rice University

Abstract:
What may be viewed as the world's smallest incandescent lightbulb is shining in a Rice University engineering laboratory with the promise of advances in sensing, photonics and perhaps computing platforms beyond the limitations of silicon.

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source

Houston, TX | Posted on September 20th, 2019

Gururaj Naik of Rice's Brown School of Engineering and graduate student Chloe Doiron have assembled unconventional "selective thermal emitters" -- collections of near-nanoscale materials that absorb heat and emit light.

Their research, reported in Advanced Materials, one-ups a recent technique developed by the lab that uses carbon nanotubes to channel heat from mid-infrared radiation to improve the efficiency of solar energy systems.

The new strategy combines several known phenomena into a unique configuration that also turns heat into light -- but in this case, the system is highly configurable.

Basically, Naik said, the researchers made an incandescent light source by breaking down a one-element system -- the glowing filament in a bulb -- into two or more subunits. Mixing and matching the subunits could give the system a variety of capabilities.

"The previous paper was all about making solar cells more efficient," said Naik, an assistant professor of electrical and computer engineering. "This time, the breakthrough is more in the science than the application. Basically, our goal was to build a nanoscale thermal light source with specific properties, like emitting at a certain wavelength, or emitting extremely bright or new thermal light states.

"Previously, people thought of a light source as just one element and tried to get the best out of it," he said. "But we break the source into many tiny elements. We put sub-elements together in such a fashion that they interact with each other. One element may give brightness; the next element could be tuned to provide wavelength specificity. We share the burden among many small parts.

"The idea is to rely upon collective behavior, not just a single element," Naik said. "Breaking the filament into many pieces gives us more degrees of freedom to design the functionality."

The system relies on non-Hermitian physics, a quantum mechanical way to describe "open" systems that dissipate energy -- in this case, heat -- rather than retain it. In their experiments, Naik and Doiron combined two kinds of near-nanoscale passive oscillators that are electromagnetically coupled when heated to about 700 degrees Celsius. When the metallic oscillator emitted thermal light, it triggered the coupled silicon disk to store the light and release in the desired manner, Naik said.

The light-emitting resonator's output, Doiron said, can be controlled by damping the lossy resonator or by controlling the level of coupling through a third element between the resonators. "Brightness and the selectivity trade off," she said. "Semiconductors give you a high selectivity but low brightness, while metals give you very bright emission but low selectivity. Just by coupling these elements, we can get the best of both worlds."

"The potential scientific impact is that we can do this not just with two elements, but many more," Naik said. "The physics would not change."

He noted that though commercial incandescent bulbs have given way to LEDs for their energy efficiency, incandescent lamps are still the only practical means to produce infrared light. "Infrared detection and sensing both rely on these sources," Naik said. "What we've created is a new way to build light sources that are bright, directional and emit light in specific states and wavelengths, including infrared."

The opportunities for sensing lie at the system's "exceptional point," he said.

"There's an optical phase transition because of how we've coupled these two resonators," Naik said. "Where this happens is called the exceptional point, because it's exceptionally sensitive to any perturbation around it. That makes these devices suitable for sensors. There are sensors with microscale optics, but nothing has been shown in devices that employ nanophotonics."

The opportunities may also be great for next-level classical computing. "The International Roadmap for Semiconductor Technology (ITRS) understands that semiconductor technology is reaching saturation and they're thinking about what next-generation switches will replace silicon transistors," Naik said. "ITRS has predicted that will be an optical switch, and that it will use the concept of parity-time symmetry, as we do here, because the switch has to be unidirectional. It sends light in the direction we want, and none comes back, like a diode for light instead of electricity."

###

The National Science Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jade Boyd

713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Rice device channels heat into light:

The Naik Lab:

Department of Electrical and Computer Engineering:

George R. Brown School of Engineering:

Related News Press

News and information

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Possible Futures

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Chip Technology

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Combination of Nanometrics and Rudolph Technologies to Create Onto Innovation October 16th, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

PROPHESEE Joins IRT Nanoelec 3D Integration Program Will Work with CEA-Leti, STMicroelectronics, Mentor, EVG, and SET to Develop New 3D Event-Based Vision System October 14th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

MIT engineers develop 'blackest black' material to date: Made from carbon nanotubes, the new coating is 10 times darker than other very black materials September 13th, 2019

Optical computing/Photonic computing

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Save time using maths: Analytical tool designs corkscrew-shaped nano-antennae August 23rd, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Sensors

Nanoscale manipulation of light leads to exciting new advancement: UNM researchers find decreasing the density of nanoparticles in ordered arrays produces exceptional field enhancements October 11th, 2019

Product authentication at your fingertips: UC Riverside-led research brings rapid and reversible switching of plasmonic color to solids October 4th, 2019

Researchers repurpose failed cancer drug into printable semiconductor October 3rd, 2019

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

Nanoelectronics

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Discoveries

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Announcements

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Physics: DNA-PAINT super-resolution microscopy at speed: Optimized DNA sequences allow for 10-times faster image acquisition in DNA-PAINT October 11th, 2019

Energy

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

Water + air + electricity = hydrogen peroxide: Rice University breakthrough produces valuable chemical on demand at point of use October 10th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Photonics/Optics/Lasers

Researchers synthesize 'impossible' superconductor October 3rd, 2019

Trapping and moving tiny particles using light September 24th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

Solar/Photovoltaic

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Water + air + electricity = hydrogen peroxide: Rice University breakthrough produces valuable chemical on demand at point of use October 10th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

New synthesis method opens up possibilities for organic electronics August 7th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project