Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists invented how to improve steel properties by 100 times: A breakthrough method of ion implantation makes stainless steel more wear resistant by 100 times

Scientists from Tomsk Polytechnic University developed a new method of ion implantation that dramatically expands the application of the alloying process in the industry. This is a highly intensive implantation of ions with low energy that can revolutionize the technology of improving material properties. TPU scientists have already experimentally confirmed the possibility of creating a doped surface layer with a depth of several hundred micrometers, while other methods of ion doping enable a depth of several tens and hundreds of nanometers.

CREDIT
Tomsk Polytechnic University
Scientists from Tomsk Polytechnic University developed a new method of ion implantation that dramatically expands the application of the alloying process in the industry. This is a highly intensive implantation of ions with low energy that can revolutionize the technology of improving material properties. TPU scientists have already experimentally confirmed the possibility of creating a doped surface layer with a depth of several hundred micrometers, while other methods of ion doping enable a depth of several tens and hundreds of nanometers. CREDIT Tomsk Polytechnic University

Abstract:
Scientists from Tomsk Polytechnic University have updated the alloying process, i.e. improving the properties of metal with impurities, which not only enhances the wear resistance of materials but also provides new qualities required by hi-tech manufacturing, science, and energy.

Scientists invented how to improve steel properties by 100 times: A breakthrough method of ion implantation makes stainless steel more wear resistant by 100 times

Tomsk, Russia | Posted on September 6th, 2019

The study results were published in the journal Surface and Coatings Technology and presented at the conference on Surface Modification of Materials by Ion Beams (SMMIB) 2019 that recently took place in Tomsk.

By now, traditional alloying methods are reported to have exhausted their technological potential. Therefore, metals are more increasingly exposed to beams of charged particles, plasma flows, and laser radiation so as to obtain advanced materials. Ion implantation (ion doping) is one of those methods enabling to change elemental composition, microstructure, and morphology of surface layers that determine such properties as wear resistance, corrosion resistance, and others.

Tomsk scientists developed a new method of ion implantation that dramatically expands the applications of the method in industry. According to Alexander Ryabchikov, the head of the Laboratory for Highly Intensive Ion Implantation, they have been able to experimentally improve the wear resistance of stainless steel by more than a hundred times.

In addition, this technology makes it possible to manufacture details and products with needed specific surface properties. For example, a barrier layer is formed by ion doping of zirconium with titanium, thus preventing oxygen penetration. This can be used to increase the service life and safety of operation of nuclear fuel cells.

Currently, the industrial use of ion doping is constrained by the small thickness of the formed ion-doped layers. The issue to be addressed through the increased kinetic energy of the ion flux implies the use of big accelerators, which is not cost-effective.

'We proposed to increase the ion penetration depth into the material by enhancing the radiation-induced diffusion with high-density ion beams that are two-three orders of magnitude superior to those used in traditional ion implantation,' said Alexander Ryabchikov.

The results obtained in the laboratory confirm the possibility of creating a doped surface layer with a depth of several hundred micrometers, while other methods of ion doping enable a depth of several tens and hundreds of nanometers.

The authors emphasize that the development of highly intensive implantation of ions with low energy could revolutionize the technology of improving material properties. Further research in this field will enable to reduce the cost of the technology application and improve the quality of products.

###

The study was supported by the grant of the Russian Science Foundation.

This year, Russia hosted the 21st International Conference on Surface Modification of Materials by Ion Beams (SMMIB-2019) for the first time. It was held on 26 - 30 August 2019 in Tomsk. Tomsk Polytechnic University was a co-organizer and the venue of the event. The large-scale conference brought together over 150 scientists (from 22 countries) who are leading physicists in the field of ion beam technology and advanced materials.

####

For more information, please click here

Contacts:
Kristina Nabokova

7-382-270-5685

Copyright © Tomsk Polytechnic University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Keystone Nano Announces FDA Approval of Investigational New Drug Application for Ceraxa for the Treatment of Acute Myeloid Leukemia September 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Possible Futures

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Discoveries

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

Materials/Metamaterials

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Scientists create a nanomaterial that is both twisted and untwisted at the same time: The material developed at University of Bath allows for incredibly sensitive detection of the direction molecules twist September 13th, 2019

MIT engineers develop 'blackest black' material to date: Made from carbon nanotubes, the new coating is 10 times darker than other very black materials September 13th, 2019

Announcements

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Uncovering the hidden “noise” that can kill qubits: New detection tool could be used to make quantum computers robust against unwanted environmental disturbances September 17th, 2019

Events/Classes

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Arrowhead Pharmaceuticals to Participate in Upcoming September 2019 Conferences August 30th, 2019

Nanoparticles could someday give humans built-in night vision August 28th, 2019

Kavli Lectures: Innovation by evolution and harnessing the quantum mechanics of the hydrogen bond August 15th, 2019

Construction

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Laser-based ultrasound approach provides new direction for nondestructive testing: Patches coated with nanoparticles from candle soot found to generate ultrasonic waves that can be used to monitor the structural integrity of buildings September 4th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Dashing the dream of ideal 'invisibility' cloaks for stress waves June 7th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project