Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Measuring changes in magnetic order to find ways to transcend conventional electronics

Figure 1. Measuring changes in magnetic order to transcend conventional electronics
Combination of Faraday rotation and second-harmonic generation obtained the trajectory of an optically induced coherent spin precession. The time-resolved SHG is a valuable tool for the study of antiferromagnetic spin dynamics providing complementary information that is inaccessible by other techniques.
Figure 1. Measuring changes in magnetic order to transcend conventional electronics Combination of Faraday rotation and second-harmonic generation obtained the trajectory of an optically induced coherent spin precession. The time-resolved SHG is a valuable tool for the study of antiferromagnetic spin dynamics providing complementary information that is inaccessible by other techniques.

Abstract:
Researchers from Tokyo Institute of Technology (Tokyo Tech) have developed an approach for precisely measuring changes in the magnetic order of antiferromagnetic materials in real time. Further understanding of these materials could enable electronic devices with speeds orders of magnitude higher.

Measuring changes in magnetic order to find ways to transcend conventional electronics

Tokyo, Japan | Posted on September 6th, 2019

Researchers around the world are constantly looking for ways to enhance or transcend the capabilities of electronic devices, which seem to be reaching their theoretical limits. Undoubtedly, one of the most important advantages of electronic technology is its speed, which, albeit high, can still be surpassed by orders of magnitude through other approaches that are not yet commercially available.

A possible way of surpassing traditional electronics is through the use of antiferromagnetic (AFM) materials. The electrons of AFM materials spontaneously align themselves in such a way that the overall magnetization of the material is practically zero. In fact, the order of an AFM material can be quantified in what is known as the ‘order parameter'. Recent studies have even shown that the AFM order parameter can be ‘switched' (that is, change it from one known value to another, really fast) using light or electric currents, which means that AFM materials could become the building blocks of future electronic devices.

However, the dynamics of the order-switching process are not understood because it is very difficult to measure the changes in the AFM order parameter in real time with high resolution. Current approaches rely on measuring only certain phenomena during AFM order switching and trying to obtain the full picture from there, which has proven to be unreliable for understanding other more intricate phenomena in detail. Therefore, a research team lead by Prof. Takuya Satoh from Tokyo Tech and researchers from ETH Zurich, developed a method for thoroughly measuring the changes in the AFM order of an YMnO3 crystal induced through optical excitation (that is, using a laser).

The main problem that the researchers addressed was the alleged "practical impossibility" of discerning between electron dynamics and changes in the AFM order in real time, which are both induced simultaneously when the material is excited to provoke order-parameter switching and when taking measurements. They employed a light-based measuring method called ‘second-harmonic generation', whose output value is directly related to the AFM order parameter, and combined it with measurements of another light-based phenomenon called the Faraday effect. This effect occurs when a certain type of light or laser is irradiated on magnetically ordered materials; in the case of YMnO3, this effect alters its AFM order parameter in a predictable and well-understood way. This was key to their approach so that they could separate the origin and nature of multiple simultaneous quantum phenomena that affected the measurements of both methods differently.

Combining these two different measurement methods, the researchers managed to fully characterize the changes in the AFM order parameter in real time with ultrafast resolution. "The proposed general approach allows us to access order-parameter dynamics at timescales of less than one trillionth of a second," states Prof. Satoh. The approach presented is crucial for better understanding the inner workings of antiferromagnetic materials. "Precise and thorough tracking of the variations in the order parameter is indispensable for understanding the complex dynamics occurring during ultrafast switching and other AFM-related phenomena," explains Prof. Satoh. The tool provided by the researchers should now be exploited to carry out more research and hopefully bring about the development of revolutionary electronic devices with unprecedented speeds.

####

For more information, please click here

Contacts:
Professor Takuya Satoh

School of Science

Email
Tel +81-3-5734-2716

Contact

Public Relations Section, Tokyo Institute of Technology


Tel +81-3-5734-2975

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

Magnetism/Magnons

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

News and information

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Possible Futures

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Chip Technology

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Discoveries

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Announcements

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Tools

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

Researchers develop innovative tool for measuring electron dynamics in semiconductors: Insights may lead to more energy-efficient chips and electronic devices March 3rd, 2023

Novel microscope developed to design better high-performance batteries: Innovation gives researchers inside view of how batteries work February 10th, 2023

Shrinking hydrogels enlarge nanofabrication options: Researchers from Pittsburgh and Hong Kong print intricate, 2D and 3D patterns December 29th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project