Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Measuring changes in magnetic order to find ways to transcend conventional electronics

Figure 1. Measuring changes in magnetic order to transcend conventional electronics
Combination of Faraday rotation and second-harmonic generation obtained the trajectory of an optically induced coherent spin precession. The time-resolved SHG is a valuable tool for the study of antiferromagnetic spin dynamics providing complementary information that is inaccessible by other techniques.
Figure 1. Measuring changes in magnetic order to transcend conventional electronics Combination of Faraday rotation and second-harmonic generation obtained the trajectory of an optically induced coherent spin precession. The time-resolved SHG is a valuable tool for the study of antiferromagnetic spin dynamics providing complementary information that is inaccessible by other techniques.

Abstract:
Researchers from Tokyo Institute of Technology (Tokyo Tech) have developed an approach for precisely measuring changes in the magnetic order of antiferromagnetic materials in real time. Further understanding of these materials could enable electronic devices with speeds orders of magnitude higher.

Measuring changes in magnetic order to find ways to transcend conventional electronics

Tokyo, Japan | Posted on September 6th, 2019

Researchers around the world are constantly looking for ways to enhance or transcend the capabilities of electronic devices, which seem to be reaching their theoretical limits. Undoubtedly, one of the most important advantages of electronic technology is its speed, which, albeit high, can still be surpassed by orders of magnitude through other approaches that are not yet commercially available.

A possible way of surpassing traditional electronics is through the use of antiferromagnetic (AFM) materials. The electrons of AFM materials spontaneously align themselves in such a way that the overall magnetization of the material is practically zero. In fact, the order of an AFM material can be quantified in what is known as the ‘order parameter'. Recent studies have even shown that the AFM order parameter can be ‘switched' (that is, change it from one known value to another, really fast) using light or electric currents, which means that AFM materials could become the building blocks of future electronic devices.

However, the dynamics of the order-switching process are not understood because it is very difficult to measure the changes in the AFM order parameter in real time with high resolution. Current approaches rely on measuring only certain phenomena during AFM order switching and trying to obtain the full picture from there, which has proven to be unreliable for understanding other more intricate phenomena in detail. Therefore, a research team lead by Prof. Takuya Satoh from Tokyo Tech and researchers from ETH Zurich, developed a method for thoroughly measuring the changes in the AFM order of an YMnO3 crystal induced through optical excitation (that is, using a laser).

The main problem that the researchers addressed was the alleged "practical impossibility" of discerning between electron dynamics and changes in the AFM order in real time, which are both induced simultaneously when the material is excited to provoke order-parameter switching and when taking measurements. They employed a light-based measuring method called ‘second-harmonic generation', whose output value is directly related to the AFM order parameter, and combined it with measurements of another light-based phenomenon called the Faraday effect. This effect occurs when a certain type of light or laser is irradiated on magnetically ordered materials; in the case of YMnO3, this effect alters its AFM order parameter in a predictable and well-understood way. This was key to their approach so that they could separate the origin and nature of multiple simultaneous quantum phenomena that affected the measurements of both methods differently.

Combining these two different measurement methods, the researchers managed to fully characterize the changes in the AFM order parameter in real time with ultrafast resolution. "The proposed general approach allows us to access order-parameter dynamics at timescales of less than one trillionth of a second," states Prof. Satoh. The approach presented is crucial for better understanding the inner workings of antiferromagnetic materials. "Precise and thorough tracking of the variations in the order parameter is indispensable for understanding the complex dynamics occurring during ultrafast switching and other AFM-related phenomena," explains Prof. Satoh. The tool provided by the researchers should now be exploited to carry out more research and hopefully bring about the development of revolutionary electronic devices with unprecedented speeds.

####

For more information, please click here

Contacts:
Professor Takuya Satoh

School of Science

Email
Tel +81-3-5734-2716

Contact

Public Relations Section, Tokyo Institute of Technology


Tel +81-3-5734-2975

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

Magnetism/Magnons

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project