Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A first for cancer research’: New approach to study tumors

This image shows a breast macrotumor of invasive ductal carcinoma type embedded in gel. (Image provided)
This image shows a breast macrotumor of invasive ductal carcinoma type embedded in gel. (Image provided)

Abstract:
Current drugs to treat malignant tumors may be successful at reaching the tumor site but often fail to fully reach the cancerous cells in tumors.

A first for cancer research’: New approach to study tumors

West Lafayette, IN | Posted on August 20th, 2019

The problem persists because tumor models used in cancer research and produced by cell culture in laboratories are not nearly the size of the actual tumors in patients. So even when a drug appears to be effective in the tiny tumors in research labs, they may perform much differently for patients.

Now, Purdue University cancer scientists are creating tumor models in 10 days that are much closer in size to the ones found in the body and readily mimic the pathological characteristics of human cancers.

“This is a first for cancer research,” said Sophie Lelièvre, a professor of cancer pharmacology in Purdue’s College of Veterinary Medicine. “For the first time we have created tumor models in the laboratory called macrotumors that are 0.5 to 1 centimeter in width and 1.5 centimeters in height. This is much closer to the size of small tumors detectable in patients, and remains viable for days, even weeks, enabling therapeutic drug testing.”

Reaching such large tumor size in vitro was possible thanks to scaffolds prepared by Rahim Rahimi, an assistant professor of materials engineering in Purdue’s College of Engineering. The scaffolds also enable peeling pieces of the large tumor for various types of analyses.

Lelièvre said that typical tumor models produced in the laboratory in three-dimensional (3D) cell culture are between 400 and 800 micrometers. When produced in vivo, in mice, tumors in the centimeter size take weeks to grow and cannot be studied in a controlled microenvironment like in 3D culture; and the production is costly.

“In addition to a comparable size of tumors, our in vitro models are valuable because they maintain the structure of the tumors as found in the body, and we can decide which microenvironmental characteristics of cancer to recapitulate,” said Lelièvre, coleader of the Drug Discovery and Molecular Sensing Program of the Purdue Center for Cancer Research. “This is critical for testing drug delivery and finding medicines that readily target the cancerous cells in tumors and help save lives. It’s another step forward in the pursuit of precision medicine.”

Lelièvre said the novel tumor design was made possible because Purdue cancer researchers from across disciplines come together with support from the Purdue University Center for Cancer Research and the 3D Cell Culture Core (3D3C) Facility of the Birck Nanotechnology Center in Purdue’s Discovery Park.

“The 3D3C is really a unique facility that you won’t find anywhere else in the world,” said Lelièvre, who initiated 3D3C in 2015 and serves as the scientific director for the facility. “We are able to bring together engineers and biologists to create models based on 3D cell culture, including tumor models, which help move research forward to the people who need it most.”

The technology is being patented through the Purdue Research Foundation Office of Technology Commercialization. The scientists are looking for partners to test and commercialize their technology.

Their work aligns with Purdue's Giant Leaps celebration of the university’s global advancements in health as part of Purdue’s 150th anniversary. It is one of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

####

About Purdue University
About Purdue Research Foundation Office of Technology Commercialization

The Purdue Research Foundation Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities through commercializing, licensing and protecting Purdue intellectual property. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities. For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at For more information about funding and investment opportunities in startups based on a Purdue innovation, contact the Purdue Foundry at Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University.

For more information, please click here

Contacts:
Writer: Chris Adam, 765-588-3341,

Source: Sophie Lelièvre,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Cancer

University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects: Study findings make significant contribution to generating tissue-specific ionizable lipids and prompts rethinking of mRNA vaccine design princi December 8th, 2023

Super-efficient laser light-induced detection of cancer cell-derived nanoparticles: Skipping ultracentrifugation, detection time reduced from hours to minutes! October 6th, 2023

The medicine of the future could be artificial life forms October 6th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project