Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > A first for cancer research’: New approach to study tumors

This image shows a breast macrotumor of invasive ductal carcinoma type embedded in gel. (Image provided)
This image shows a breast macrotumor of invasive ductal carcinoma type embedded in gel. (Image provided)

Abstract:
Current drugs to treat malignant tumors may be successful at reaching the tumor site but often fail to fully reach the cancerous cells in tumors.

A first for cancer research’: New approach to study tumors

West Lafayette, IN | Posted on August 20th, 2019

The problem persists because tumor models used in cancer research and produced by cell culture in laboratories are not nearly the size of the actual tumors in patients. So even when a drug appears to be effective in the tiny tumors in research labs, they may perform much differently for patients.

Now, Purdue University cancer scientists are creating tumor models in 10 days that are much closer in size to the ones found in the body and readily mimic the pathological characteristics of human cancers.

“This is a first for cancer research,” said Sophie Lelièvre, a professor of cancer pharmacology in Purdue’s College of Veterinary Medicine. “For the first time we have created tumor models in the laboratory called macrotumors that are 0.5 to 1 centimeter in width and 1.5 centimeters in height. This is much closer to the size of small tumors detectable in patients, and remains viable for days, even weeks, enabling therapeutic drug testing.”

Reaching such large tumor size in vitro was possible thanks to scaffolds prepared by Rahim Rahimi, an assistant professor of materials engineering in Purdue’s College of Engineering. The scaffolds also enable peeling pieces of the large tumor for various types of analyses.

Lelièvre said that typical tumor models produced in the laboratory in three-dimensional (3D) cell culture are between 400 and 800 micrometers. When produced in vivo, in mice, tumors in the centimeter size take weeks to grow and cannot be studied in a controlled microenvironment like in 3D culture; and the production is costly.

“In addition to a comparable size of tumors, our in vitro models are valuable because they maintain the structure of the tumors as found in the body, and we can decide which microenvironmental characteristics of cancer to recapitulate,” said Lelièvre, coleader of the Drug Discovery and Molecular Sensing Program of the Purdue Center for Cancer Research. “This is critical for testing drug delivery and finding medicines that readily target the cancerous cells in tumors and help save lives. It’s another step forward in the pursuit of precision medicine.”

Lelièvre said the novel tumor design was made possible because Purdue cancer researchers from across disciplines come together with support from the Purdue University Center for Cancer Research and the 3D Cell Culture Core (3D3C) Facility of the Birck Nanotechnology Center in Purdue’s Discovery Park.

“The 3D3C is really a unique facility that you won’t find anywhere else in the world,” said Lelièvre, who initiated 3D3C in 2015 and serves as the scientific director for the facility. “We are able to bring together engineers and biologists to create models based on 3D cell culture, including tumor models, which help move research forward to the people who need it most.”

The technology is being patented through the Purdue Research Foundation Office of Technology Commercialization. The scientists are looking for partners to test and commercialize their technology.

Their work aligns with Purdue's Giant Leaps celebration of the university’s global advancements in health as part of Purdue’s 150th anniversary. It is one of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

####

About Purdue University
About Purdue Research Foundation Office of Technology Commercialization

The Purdue Research Foundation Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities through commercializing, licensing and protecting Purdue intellectual property. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities. For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at For more information about funding and investment opportunities in startups based on a Purdue innovation, contact the Purdue Foundry at Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University.

For more information, please click here

Contacts:
Writer: Chris Adam, 765-588-3341,

Source: Sophie Lelièvre,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Cancer

How to keep boron inside cells during radiotherapy: a simple novel approach to cancer treatment January 24th, 2020

Let the europium shine brighter January 21st, 2020

Copper-based nanomaterials can kill cancer cells in mice January 10th, 2020

Tech company NANOBIOTIX announces late-stage registration trial and global development plan for 2020 January 8th, 2020

Possible Futures

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Nanomedicine

Novel formulation permits use of toxin from rattlesnake venom to treat chronic pain: Researchers Butantan Institute succeeded in reducing the toxicity and potentiating the analgesic effect of crotoxin by encapsulating it in nanostructured silica -- the results of tests in an anim February 14th, 2020

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease February 14th, 2020

Nanotech company granted FDA Fast Track for treatment of head & neck cancer February 10th, 2020

Arrowhead Reports Interim Clinical Data on Cardiometabolic Candidates ARO-APOC3 and ARO-ANG3 February 5th, 2020

Discoveries

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate: Scientists in Korea are first to observe an unprecedented way in which graphene forms a hybrid layer that prevents copper corrosion February 14th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Announcements

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Does graphene cause or prevent the corrosion of copper? New study finally settles the debate: Scientists in Korea are first to observe an unprecedented way in which graphene forms a hybrid layer that prevents copper corrosion February 14th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Patents/IP/Tech Transfer/Licensing

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

Supercharging tomorrow: Monash develops world's most efficient lithium-sulfur battery January 3rd, 2020

Monitor Nanotechnology Patent Grants December 3rd, 2019

Research partnerships

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

A consensus statement establishes the protocols to assess and report stability of perovskite photovoltaic devices February 1st, 2020

New European Project to Fast-Track Adoption Of Cyber-Physical Systems (CPS) by SMEs: DigiFed to Demonstrate Potential of CPS Digital Technologies in Hardware Security, Human-Machine Interaction, and Autonomy for Small & Midsized Companies January 29th, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project