Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications

Rice University scientists have made it much simpler to add carbon chains to hexagonal-boron nitride, a 2D material much stiffer than steel and an excellent conductor of heat. (Credit: Illustration courtesy of the Angel Martí Group/Rice University)
Rice University scientists have made it much simpler to add carbon chains to hexagonal-boron nitride, a 2D material much stiffer than steel and an excellent conductor of heat. (Credit: Illustration courtesy of the Angel Martí Group/Rice University)

Abstract:
Hexagonal-boron nitride is tough, but Rice University scientists are making it easier to get along with.

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications

Houston, TX | Posted on August 14th, 2019

Two-dimensional h-BN, an insulating material also known as "white graphene," is four times stiffer than steel and an excellent conductor of heat, a benefit for composites that rely on it to enhance their properties.

Those qualities also make h-BN hard to modify. Its tight hexagonal lattice of alternating boron and nitrogen atoms is highly resistant to change, unlike graphene and other 2D materials that can be easily modified — aka functionalized — with other elements.

The Rice lab of chemist Angel Martí has published a protocol to enhance h-BN with carbon chains. These turn the 2D tough guy into a material that retains its strength but is more amenable to bonding with polymers or other materials in composites.

The lab's paper in the American Chemical Society's Journal of Physical Chemistry suggests h-BN can be made more dispersible in organic solvents as well. Martí and his team modified the Billups-Birch reaction process they had successfully used to alter boron nitride nanotubes to attack the defenses of h-BN and covalently attach carbons.

Birch reduction, discovered in the 1940s and enhanced in 2004 by Rice Professor Emeritus of Chemistry Edward Billups to functionalize carbon nanotubes, frees electrons to bind with other atoms. In the Rice process, Martí and his team can control the amount of h-BN functionalization by varying the amount of lithium in the reaction.

Lithium is an alkali metal that sheds free electrons when combined with liquefied ammonia. Mixed with h-BN flakes and a carbon source, 1-Bromododecane in this case, the reaction produces an alkyl radical, a chemical species that reacts with h-BN and makes a bond.

Martí said it's the best method found so far to modify h-BN, which resists change even under high temperatures. "You take a little bit of graphite and put it in a furnace at 800 degrees (Celsius), and it will be gone," he said. "You take hexagonal-boron nitride and do the same, and it will still be there smiling at you.

"That gives you an idea of how stable it is, and that’s the problem we wanted to address," Martí said. "The material is good for certain applications, but to control its properties for manufacturing, you have to graft different groups onto the surface."

He said a 20-to-1 molar ratio of lithium to h-BN optimized the process of grafting carbon chains to the surface and edges. Because the base h-BN remains stable under high temperatures, it can be returned to its pristine state by simply burning off the functional chains.

While h-BN is naturally hydrophilic (water-attracting), the functional carbons make them nearly superhydrophobic (water-avoiding), a good property for making protective films, Martí said. But even when enhanced, the flakes remain amenable to dispersion in non-polar solvents.

Martí said his group is exploring what other kinds of molecules can be grafted onto white graphene. "What about benzene groups? What about ethers? What about groups that will make it compatible with other materials?

"There's a lot of interest in making composite materials between h-BN, boron nitride nanotubes and polymers," he said. "Ultimately, we'd like to graft different groups onto h-BN and build a library, kind of a toolbox, of functional groups that can be used with these materials."

Rice alumnus Carlos de los Reyes is lead author of the paper. Co-authors are Rice undergraduate Katharyn Hernández, graduate students Cecilia Martínez-Jiménez, Cedric Ginestra and Ashleigh Smith McWilliams, research assistant Kendahl Walz-Mitra and Matteo Pasquali, the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, a professor of materials science and nanoengineering and of chemistry. Martí is an associate professor of chemistry, of bioengineering and of materials science and nanoengineering.

The National Science Foundation, the Air Force Office of Scientific Research and the Welch Foundation supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations on Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

New nano building block takes a bow:

Angel Martí Group:

Rice Department of Chemistry:

Wiess School of Natural Sciences:

Related News Press

News and information

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

2 Dimensional Materials

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

Oddball edge wins nanotube faceoff: Rice U. theory shows peculiar 'Janus' interface a common mechanism in carbon nanotube growth July 29th, 2019

Graphene/ Graphite

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

Govt.-Legislation/Regulation/Funding/Policy

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Possible Futures

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Discoveries

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Materials/Metamaterials

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Rice lab produces simple fluorescent surfactants: Compounds show promise for use in medicine, manufacturing August 5th, 2019

Wood You Like Some Fresh Water? New treatment for wood makes a membrane to extract fresh water August 5th, 2019

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

Announcements

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Military

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

Oddball edge wins nanotube faceoff: Rice U. theory shows peculiar 'Janus' interface a common mechanism in carbon nanotube growth July 29th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Researchers embrace imperfection to improve biomolecule transport August 8th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project