Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New synthesis method opens up possibilities for organic electronics

New direct arylation polycondensation method opens the door to synthesize various promising n-type semiconducting polymers
New direct arylation polycondensation method opens the door to synthesize various promising n-type semiconducting polymers

Abstract:
Scientists at Tokyo Institute of Technology (Tokyo Tech) modify a previous synthesis method to create a new semiconducting polymer with remarkable properties which could be used in organic electronic devices such as thin film transistors.

New synthesis method opens up possibilities for organic electronics

Tokyo, Japan | Posted on August 7th, 2019

Semiconducting polymers, very large chain-like molecules made from repeating sub-units, are increasingly drawing the attention of researchers because of their potential applications in organic electronic devices. Like most semiconducting materials, semiconducting polymers can be classified as p-type or n-type according to their conducting properties. Although p-type semiconducting polymers have seen dramatic improvements thanks to recent advances, the same cannot be said about their n-type counterparts, whose electron-conducting characteristics (or 'electron mobility') are still poor.

Unfortunately, high-performance n-type semiconducting polymers are necessary for many green applications, such as various types of solar cells. The main challenges holding back the development of n-type semiconducting polymers are the limited molecular design strategies and synthesis procedures available. Among the existing synthesis methods, DArP (which stands for 'direct arylation polycondensation') has shown promising results for producing n-type semiconducting polymers in an environmentally friendly and efficient way. However, until now, the building blocks (monomers) used in the DArP method were required to have an orienting group in order to produce polymers reliably, and this severely limited the applicability of DArP to make high-performance semiconducting polymers.

Luckily, a research team from Tokyo Institute of Technology led by Prof. Tsuyoshi Michinobu found a way around this. They managed to reliably produce two long n-type semiconducting polymers (referred to as P1 and P2) through the DArP method by using palladium and copper as catalysts, which are materials or substances that can be used promote or inhibit specific reactions.

The two polymers were almost identical and contained two thiazole rings–pentagonal organic molecules that contain a nitrogen atom and a sulfur atom. However, the position of the nitrogen atom of the thiazole rings was slightly different between P1 and P2 and, as the researchers found out, this led to significant and unexpected changes in their semiconducting properties and structure. Even though P1 had a more planar structure and was expected to have a higher electron mobility, it was P2 who stole the show. The backbone of this polymer is twisted and looks similar to alternating chain links. More importantly, the researchers were surprised to find that the electron mobility of P2 was forty times higher than that of P1 and even higher than that of the current benchmark n-type semiconducting polymer. "Our results suggest the possibility of P2 being the new benchmark among n-type semiconducting materials for organic electronics," remarks Prof. Michinobu.

In addition, semiconducting devices made using P2 were also remarkably stable, even when stored in air for a long time, which is known to be a weakness of n-type semiconducting polymers. The researchers believe that the promising properties of P2 are because of its more crystalline (ordered) structure compared with P1, which changes the previous notion that semiconducting polymers should have a very planar structure to have better semiconducting properties. "Our new DArP method opens a door for synthesizing various promising n-type semiconducting polymers which cannot be obtained via traditional methods," concludes Prof. Michinobu. This work is another step in the direction towards a greener future with sustainable organic electronics.

####

For more information, please click here

Contacts:
Associate Professor Tsuyoshi Michinobu

School of Materials and Chemical Technology

Email
Tel +81-3-5734-3774

Contact

Public Relations Section, Tokyo Institute of Technology

Email
Tel +81-3-5734-2975

KAZUHIDE HASEGAWA



University Research Administrator

Global Research Communications

Office of Research and Innovation

Tokyo Tech

 2-12-1-E3-10 Ookayama, Meguro-ku, Tokyo 152-8550



 TEL: +81-3-5734-3257 FAX: +81-3-5734-3683

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Organic Electronics

Researchers repurpose failed cancer drug into printable semiconductor October 3rd, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Thin films

CCNY physicists score double hit in LED research September 27th, 2019

Can't get thinner than this: synthesis of atomically flat boron sheets August 23rd, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Possible Futures

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Chip Technology

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Combination of Nanometrics and Rudolph Technologies to Create Onto Innovation October 16th, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

PROPHESEE Joins IRT Nanoelec 3D Integration Program Will Work with CEA-Leti, STMicroelectronics, Mentor, EVG, and SET to Develop New 3D Event-Based Vision System October 14th, 2019

Discoveries

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Highest-throughput 3D printer is future of manufacturing: Rapid manufacturing on-demand could put warehouses, molds into the past October 17th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Announcements

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

Arrowhead Pharmaceuticals Hosts R&D Day on Emerging Pipeline of RNAi Therapeutics October 18th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Novel nanoprobes show promise for optical monitoring of neural activity: New approach for studying neural circuits offers advantages over both microelectrodes and fluorescence-based optical techniques that require genetic modifications October 18th, 2019

Nanoparticles may have bigger impact on the environment than previously thought: Non-antibacterial nanoparticles can cause resistance in bacteria October 17th, 2019

Physics: DNA-PAINT super-resolution microscopy at speed: Optimized DNA sequences allow for 10-times faster image acquisition in DNA-PAINT October 11th, 2019

Energy

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

Water + air + electricity = hydrogen peroxide: Rice University breakthrough produces valuable chemical on demand at point of use October 10th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Solar/Photovoltaic

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Water + air + electricity = hydrogen peroxide: Rice University breakthrough produces valuable chemical on demand at point of use October 10th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project