Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Closing the terahertz gap: Tiny laser is an important step toward new sensors

A new imaging technology rapidly measures the chemical compositions of solids. A conventional image of a sample pill is shown at left; at right, looking at the same surface with terahertz frequencies reveals various ingredients as different colors. Such images would aid quality control and development in pharmaceutical manufacturing, as well as medical diagnosis and treatment.

CREDIT
Sterczewski et al.
A new imaging technology rapidly measures the chemical compositions of solids. A conventional image of a sample pill is shown at left; at right, looking at the same surface with terahertz frequencies reveals various ingredients as different colors. Such images would aid quality control and development in pharmaceutical manufacturing, as well as medical diagnosis and treatment. CREDIT Sterczewski et al.

Abstract:
In a major step toward developing portable scanners that can rapidly measure molecules in pharmaceuticals or classify tissue in patients' skin, researchers have created an imaging system that uses lasers small and efficient enough to fit on a microchip.

Closing the terahertz gap: Tiny laser is an important step toward new sensors

Princeton, NJ | Posted on July 25th, 2019

The system emits and detects electromagnetic radiation at terahertz frequencies -- higher than radio waves but lower than the long-wave infrared light used for thermal imaging. Imaging using terahertz radiation has long been a goal for engineers, but the difficulty of creating practical systems that work in this frequency range has stymied most applications and resulted in what engineers call the "terahertz gap."

"Here, we have a revolutionary technology that doesn't have any moving parts and uses direct emission of terahertz radiation from semiconductor chips," said Gerard Wysocki, an associate professor of electrical engineering at Princeton University and one of the leaders of the research team.

Terahertz radiation can penetrate substances such as fabrics and plastics, is non-ionizing and therefore safe for medical use, and can be used to view materials difficult to image at other frequencies. The new system, described in a paper published in the June issue of the journal Optica, can quickly probe the identity and arrangement of molecules or expose structural damage to materials.

The device uses stable beams of radiation at precise frequencies. The setup is called a frequency comb because it contains multiple "teeth" that each emit a different, well-defined frequency of radiation. The radiation interacts with molecules in the sample material. A dual-comb structure allows the instrument to efficiently measure the reflected radiation. Unique patterns, or spectral signatures, in the reflected radiation allow researchers to identify the molecular makeup of the sample.

While current terahertz imaging technologies are expensive to produce and cumbersome to operate, the new system is based on a semiconductor design that costs less and can generate many images per second. This speed could make it useful for real-time quality control of pharmaceutical tablets on a production line and other fast-paced uses.

"Imagine that every 100 microseconds a tablet is passing by, and you can check if it has a consistent structure and there's enough of every ingredient you expect," said Wysocki.

As a proof of concept, the researchers created a tablet with three zones containing common inert ingredients in pharmaceuticals -- forms of glucose, lactose and histidine. The terahertz imaging system identified each ingredient and revealed the boundaries between them, as well as a few spots where one chemical had spilled over into a different zone. This type of "hot spot" represents a frequent problem in pharmaceutical production that occurs when the active ingredient is not properly mixed into a tablet.

The team also demonstrated the system's resolution by using it to image a U.S. quarter. Fine details like the eagle's wing feathers, as small as one-fifth of a millimeter wide, were clearly visible.

While the technology makes the industrial and medical use of terahertz imaging more feasible than before, it still requires cooling to a low temperature, a major hurdle for practical applications. Many researchers are now working on lasers that will potentially operate at room temperature. The Princeton team said its dual-comb hyperspectral imaging technique will work well with these new room-temperature laser sources, which could then open many more uses.

Because it is non-ionizing, terahertz radiation is safe for patients and could potentially be used as a diagnostic tool for skin cancer. In addition, the technology's ability to image metal could be applied to test airplane wings for damage after being struck by an object in flight.

In addition to Wysocki, the paper's Princeton authors are former visiting graduate student Lukasz Sterczewski (currently a postdoctoral scholar at NASA's Jet Propulsion Laboratory) and associate research scholar Jonas Westberg. Other co-authors are Yang Yang, David Burghoff and Qing Hu of the Massachusetts Institute of Technology; and John Reno of Sandia National Laboratories. Support for the research was provided in part by the Defense Advanced Research Projects Agency and the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Molly Sharlach

Copyright © Princeton University, Engineering School

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Imaging

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Possible Futures

Let the europium shine brighter January 21st, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanomedicine

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites donít need liquid water to work January 14th, 2020

A New Old Therapy: A controlled phage therapy can target drug-resistant bacteria while sidestepping potential unintended consequences January 13th, 2020

Copper-based nanomaterials can kill cancer cells in mice January 10th, 2020

Molecular factories: The combination between nature and chemistry is functional January 10th, 2020

Discoveries

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Announcements

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Let the europium shine brighter January 21st, 2020

Quantum physics: Controlled experiment observes self-organized criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Tools

Color superlensing to assist in surpassing diffraction barrier: A paper by Kazan Federal University's Sergey Kharintsev appeared in Optics Letters January 3rd, 2020

ORNL researchers advance performance benchmark for quantum computers January 3rd, 2020

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Onto Innovation to Present at the 22nd Annual Needham Growth Conference January 3rd, 2020

Military

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites donít need liquid water to work January 14th, 2020

A new approach to making airplane parts, minus the massive infrastructure: Carbon nanotube film produces aerospace-grade composites with no need for huge ovens or autoclaves. January 13th, 2020

Research partnerships

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Pretty with a twist: Complex porous, chiral nano-patterns arise from a simple linear building block January 16th, 2020

Toward safer disposal of printed circuit boards January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project