Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories.

The new chip is based on an ultra-thin material that changes electrical resistance in response to different wavelengths of light.

CREDIT
RMIT University
The new chip is based on an ultra-thin material that changes electrical resistance in response to different wavelengths of light. CREDIT RMIT University

Abstract:
Researchers from RMIT University drew inspiration from an emerging tool in biotechnology - optogenetics - to develop a device that replicates the way the brain stores and loses information.

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories.

Melbourne, Australia | Posted on July 19th, 2019

Optogenetics allows scientists to delve into the body's electrical system with incredible precision, using light to manipulate neurons so that they can be turned on or off.

The new chip is based on an ultra-thin material that changes electrical resistance in response to different wavelengths of light, enabling it to mimic the way that neurons work to store and delete information in the brain.

Research team leader Dr Sumeet Walia said the technology moves us closer towards artificial intelligence (AI) that can harness the brain's full sophisticated functionality.

"Our optogenetically-inspired chip imitates the fundamental biology of nature's best computer - the human brain," Walia said.

"Being able to store, delete and process information is critical for computing, and the brain does this extremely efficiently.

"We're able to simulate the brain's neural approach simply by shining different colours onto our chip.

"This technology takes us further on the path towards fast, efficient and secure light-based computing.

"It also brings us an important step closer to the realisation of a bionic brain - a brain-on-a-chip that can learn from its environment just like humans do."

Dr Taimur Ahmed, lead author of the study published in Advanced Functional Materials, said being able to replicate neural behavior on an artificial chip offered exciting avenues for research across sectors.

"This technology creates tremendous opportunities for researchers to better understand the brain and how it's affected by disorders that disrupt neural connections, like Alzheimer's disease and dementia," Ahmed said.

The researchers, from the Functional Materials and Microsystems Research Group at RMIT, have also demonstrated the chip can perform logic operations - information processing - ticking another box for brain-like functionality.

Developed at RMIT's MicroNano Research Facility, the technology is compatible with existing electronics and has also been demonstrated on a flexible platform, for integration into wearable electronics.

How the chip works:

Neural connections happen in the brain through electrical impulses. When tiny energy spikes reach a certain threshold of voltage, the neurons bind together - and you've started creating a memory.

On the chip, light is used to generate a photocurrent. Switching between colors causes the current to reverse direction from positive to negative.

This direction switch, or polarity shift, is equivalent to the binding and breaking of neural connections, a mechanism that enables neurons to connect (and induce learning) or inhibit (and induce forgetting).

This is akin to optogenetics, where light-induced modification of neurons causes them to either turn on or off, enabling or inhibiting connections to the next neuron in the chain.

To develop the technology, the researchers used a material called black phosphorus (BP) that can be inherently defective in nature.

This is usually a problem for optoelectronics, but with precision engineering the researchers were able to harness the defects to create new functionality.

"Defects are usually looked on as something to be avoided, but here we're using them to create something novel and useful," Ahmed said.

"It's a creative approach to finding solutions for the technical challenges we face."

####

For more information, please click here

Contacts:
Michael Quin

61-499-515-417

Copyright © RMIT University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Multifunctional optoelectronics via harnessing defects in layered black phosphorus", with co-authors from RMIT's Sir Ian Potter NanoBiosensing Facility, Colorado State University, Australian National University and Queensland University of Technology, is published in Advanced Functional Materials (DOI: 10.1002/adfm.201901991).

Related News Press

News and information

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Possible Futures

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Chip Technology

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

ACM Research Announces Global Commercial Availability of Environmentally Friendly, Cost-Effective Advanced Wafer Cleaning System: Ultra C Tahoe delivers single wafer cleaning performance with one-tenth of the sulfuric acid consumption December 3rd, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Optical computing/Photonic computing

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability November 29th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Discoveries

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Announcements

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Artificial Intelligence

"Inverse Design for Self-Assembly: Patchy Particles, Machine Learning, and the Truth about Entropy" December 3rd, 2019

GLOBALFOUNDRIES Qualifies Synopsys Fusion Design Platform on 12LP FinFET Platform October 11th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Photonics/Optics/Lasers

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability November 29th, 2019

Researchers synthesize 'impossible' superconductor October 3rd, 2019

Trapping and moving tiny particles using light September 24th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project