Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power

Physicist Zhifeng Ren, center, director of the Texas Center for Superconductivity at the University of Houston, led a project to resolve the problem of asymmetrical thermoelectric performance.

CREDIT
University of Houston
Physicist Zhifeng Ren, center, director of the Texas Center for Superconductivity at the University of Houston, led a project to resolve the problem of asymmetrical thermoelectric performance. CREDIT University of Houston

Abstract:
The promise of thermoelectric materials as a source of clean energy has driven the search for materials that can efficiently produce substantial amounts of power from waste heat.

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power

Houston, TX | Posted on June 21st, 2019

Researchers reported a major step forward Friday, publishing in Science Advances the discovery of a new explanation for asymmetrical thermoelectric performance, the phenomenon that occurs when a material that is highly efficient in a form which carries a positive charge is far less efficient in the form which carries a negative charge, or vice versa.

Zhifeng Ren, M. D. Anderson Chair Professor of Physics at the University of Houston, director of the Texas Center for Superconductivity at UH and corresponding author on the paper, said they have developed a model to explain the previously unaddressed disparity in performance between the two types of formulations. They then applied the model to predict promising new materials to generate power using waste heat from power plants and other sources.

The researchers already knew thermoelectric efficiency depends on the performance of the material in both forms, known as "p-type" and "n-type" for carrying a positive and negative charge, respectively. But most materials either don't exist in both formulations or one type is more efficient than the other.

Promising New Material Synthesized

It is possible to build effective thermoelectric devices using just a p-type or n-type compound, but it is easier to design a device that contains both types; Ren said the best performance would come when both types exhibit similar properties.

The researchers synthesized one of the predicted materials, a zirconium-cobalt-bismuth compound, and reported a measured heat-to-electricity conversion efficiency of 10.6% at both the cold side, about 303 Kelvin, or about 86 degrees Fahrenheit, and the hot side, about 983 Kelvin (1,310 Fahrenheit) for both the p-type and the n-type.

Jun Mao, a post-doctoral researcher at UH and a first author of the report, said they determined the asymmetrical performance of some materials is linked to the fact that the charge moves at different rates in the two types of formulation. "If the charge movement of both the positive charge, for p-type, and the negative charge, for n-type, is similar, the thermoelectric performance of both types is similar," he said.

Knowing that, they were able to use the mobility ratio to predict performance of previously unstudied formulations.

"When the thermoelectric performance for one type of a material has been experimentally studied, while the other type has not yet been investigated, it is possible to predict the ZT by using the identified relationship between the asymmetry and weighted mobility ratio," the researchers wrote. ZT, or the figure of merit, is a metric used to determine how efficiently a thermoelectric material converts heat to electricity.

New Model Predicts Highly Efficient Materials

Hangtian Zhu, a post-doctoral researcher at UH and the report's other first author, said the next step is determining how to formulate the corresponding type of material, once a material with a high efficiency in either p-type or n-type is found.

That can require experimentation to determine the best dopant - researchers tweak performance by adding a tiny amount of an additional element to the compound, known as "doping" - to improve performance, Zhu said.

That's where the new understanding of asymmetrical performance comes in. Zhu said by predicting which compounds will have high performance in both types, researchers are encouraged to continue looking for the best combination, even if early efforts did not succeed.

###

Other researchers involved in the project are: Qing Zhu and Zihang Liu, both of UH; Yumei Wang of the Beijing National Laboratory for Condensed Matter Physics; and Zhenzhen Feng, Jifeng Sun and David J. Singh of the University of Missouri.

####

For more information, please click here

Contacts:
Jeannie Kever

713-743-0778

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Superconductivity

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

A novel Li-ion superconductor makes possible an era of safe battery: A fast Li-ion conducting solid electrolyte material comparable to the liquid electrolytes used in typical batteries. An innovative synthesis developed for a Li-ion superconductor without any compromise between p April 10th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Possible Futures

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Discoveries

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Energy

Process for 'two-faced' nanomaterials may aid energy, information tech June 26th, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

Spontaneous formation of nanoscale hollow structures could boost battery storage June 12th, 2020

Research partnerships

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project