Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S

(a) Simplified flow chart for the magnetic susceptibility measurement set-up for the diamond anvil cell (DAC). LIA and AC denote lock-in amplifier and alternating-current source, respectively. (b) Left: The sample in the gasket hole at 2 GPa and 200 K (left), and at 155 GPa and 300 K (right), respectively. Right: Magnetic susceptibility signals of sulfur hydride at various pressures.

CREDIT
©Science China Press
(a) Simplified flow chart for the magnetic susceptibility measurement set-up for the diamond anvil cell (DAC). LIA and AC denote lock-in amplifier and alternating-current source, respectively. (b) Left: The sample in the gasket hole at 2 GPa and 200 K (left), and at 155 GPa and 300 K (right), respectively. Right: Magnetic susceptibility signals of sulfur hydride at various pressures. CREDIT ©Science China Press

Abstract:
The discovery of the extremely high superconducting temperature (Tc) of ~200 K reported in the sulfur hydride system above 100 GPa, has broken the high-temperature superconductivity record for the copper oxides. The zero resistance superconducting measurements of sulfur hydride system have been reported by Eremets et al.. Direct, complete and many pressure-point Meissner effect measurements under high pressures are urgently needed. Motivated by this, the research group of Prof. Tian Cui from Jilin University has made a breakthrough in fulfilling the perfect diamagnetism of sulfur hydride system under high pressure, using a highly sensitive magnetic susceptibility technique adapted for a megabar-pressure diamond anvil cell (DAC).

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S

Beijing, China | Posted on June 14th, 2019

Through theoretical calculation and experimental research, scientists have found that some hydrogen-rich compounds show very high superconducting transition temperature under high pressure. For example, the superconducting transition temperature of sulfur hydride at 155 GPa is 203 K, and that of lanthanum hydride at 170 GPa is 250 K. However, the experimental studies on the superconductivity of hydrogen-rich compounds are focused on the characterization of the superconducting zero resistance characteristics. As is known to all, perfect diamagnetism is another essential characteristic of superconductors, but the experimental measurement of perfect diamagnetism in hydrogen-rich compounds at ultra-high pressure is extremely challenging. Megabar presures or even higher can be generated by the diamond anvil cell, but the sample size is less than 0.05×0.05×0.01 mm3. The very small sample dimension and sensitive metal parts of the cell lead to very low signal-to-noise ratio when performing magnetic measurement, so it is very difficult to extract weak sample signals from huge noise signals.

By suppressing the noise of signal source, shielding the transmission noise and improving the sensitivity of signal extraction, the authors optimize the magnetic measurement method based on DAC, build the magnetic susceptibility measurement system with high sensitivity, and measures the alternating current magnetic susceptibility of sulfur hydrogen sample under high pressure. They firstly sealed liquid hydrogen sulfide into a DAC using cryogenic technology. The target sample H3S was prepared by low temperature compression path and the superconducting transition was observed at 183 K and 149 GPa. The trend of superconducting transition temperature under different pressures was obtained, and the superconducting phase diagram of hydrogen sulfide was improved.

The research results show that it is feasible to measure the alternating current susceptibility in the hydrogen-rich compounds above megarbar pressure. The above research confirms the high-temperature superconductivity and determined the superconducting phase diagram of sulfur hydrogen system from magnetic susceptibility data, which opens up a broad research prospect for the experimental research of hydrogen-rich superconductors under ultra-high pressure.

####

For more information, please click here

Contacts:
Tian Cui

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project