Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > 2D crystals conforming to 3D curves create strain for engineering quantum devices

Strain-tolerant, triangular, monolayer crystals of WS2 were grown on SiO2 substrates patterned with donut-shaped pillars, as shown in scanning electron microscope (bottom) and atomic force microscope (middle) image elements. The curvature of the pillars induced strain in the overlying crystals that locally altered their optoelectronic properties, as shown in bright regions of photoluminescence (top).

CREDIT
Christopher Rouleau/Oak Ridge National Laboratory, US Dept. of Energy
Strain-tolerant, triangular, monolayer crystals of WS2 were grown on SiO2 substrates patterned with donut-shaped pillars, as shown in scanning electron microscope (bottom) and atomic force microscope (middle) image elements. The curvature of the pillars induced strain in the overlying crystals that locally altered their optoelectronic properties, as shown in bright regions of photoluminescence (top). CREDIT Christopher Rouleau/Oak Ridge National Laboratory, US Dept. of Energy

Abstract:
A team led by scientists at the Department of Energy's Oak Ridge National Laboratory explored how atomically thin two-dimensional (2D) crystals can grow over 3D objects and how the curvature of those objects can stretch and strain the crystals. The findings, published in Science Advances, point to a strategy for engineering strain directly during the growth of atomically thin crystals to fabricate single photon emitters for quantum information processing.

2D crystals conforming to 3D curves create strain for engineering quantum devices

Oak Ridge, TN | Posted on June 7th, 2019

The team first explored growth of the flat crystals on substrates patterned with sharp steps and trenches. Surprisingly, the crystals conformally grew up and down these flat obstacles without changing their properties or growth rates. However, curvy surfaces required the crystals to stretch as they grew to maintain their crystal structure. This growth of 2D crystals into the third dimension presented a fascinating opportunity.

"You can engineer how much strain you impart to a crystal by designing objects for them to grow over," said Kai Xiao, who with ORNL colleagues David Geohegan and postdoctoral researcher Kai Wang (now at Intel) conceived the study. "Strain is one way to make 'hot spots' for single photon emitters."

Conformal growth of perfect 2D crystals over 3D objects has the promise to localize strain to create high-fidelity arrays of single photon emitters. Stretching or compressing the crystal lattice changes the material's band gap, the energy gap between the valence and conduction bands of electrons, which largely determines a material's optoelectronic properties. Using strain engineering, researchers can funnel charge carriers to recombine precisely where desired in the crystal instead of at random defect locations. By tailoring curved objects to localize strain in the crystal, and then measuring resulting shifts in optical properties, the experimentalists compelled co-authors at Rice University--theorists Henry Yu, Nitant Gupta and Boris Yakobson--to simulate and map how curvature induces strain during crystal growth.

At ORNL, Wang and Xiao designed experiments with Bernadeta Srijanto to explore the growth of 2D crystals over lithographically patterned arrays of nanoscale shapes. Srijanto first used photolithography masks to protect certain areas of a silicon oxide surface during exposure to light, and then etched away the exposed surfaces to leave vertically standing shapes, including donuts, cones and steps. Wang and another postdoctoral researcher, Xufan Li (now at Honda Research Institute), then inserted the substrates into a furnace where vaporized tungsten oxide and sulfur reacted to deposit tungsten disulfide on the substrates as monolayer crystals. The crystals grew as an orderly lattice of atoms in perfect triangular tiles that grew larger with time by adding row after row of atoms to their outer edges. While the 2D crystals seemed to effortlessly fold like paper over tall steps and sharp trenches, growth over curved objects forced the crystals to stretch to maintain their triangular shape.

The scientists found that "donuts" 40 nanometers high were great candidates for single photon emitters because the crystals could reliably tolerate the strain they induced, and the maximum strain was precisely in the "hole" of the donut, as measured by shifts in the photoluminescence and Raman scattering. In the future, arrays of donuts or other structures could be patterned anywhere that quantum emitters are desired before the crystals are grown.

Wang and ORNL co-author Alex Puretzky used photoluminescence mapping to reveal where the crystals nucleated and how fast each edge of the triangular crystal progressed as it grew over the donuts. After careful analysis of the images, they were surprised to discover that although the crystals maintained their perfect shapes, the edges of crystals that had been strained by donuts grew faster.

To explain this acceleration, Puretzky developed a crystal growth model, and colleague Mina Yoon conducted first-principles calculations. Their work showed that strain is more likely to induce defects on the growing edge of a crystal. These defects can multiply the number of nucleation sites that seed crystal growth along an edge, allowing it to grow faster than before.

The reason crystals can grow easily up and down deep trenches, but become strained by shallow donuts, has to do with conformity and curvature. Imagine wrapping presents. Boxes are easy to wrap because the paper can fold to conform to the shape. But an irregularly shaped object with curves, such as an unboxed mug, is impossible to wrap conformally (to avoid tearing the paper, you would have to be able to stretch it like plastic wrap.)

The 2D crystals also stretch to conform to the substrate's curves. Eventually, however, the strain becomes too great and the crystals split to release the strain, atomic force microscopy and other techniques revealed. After the crystal cracks, growth of the still-strained material proceeds in different directions for each new arm. At Nanjing University of Aeronautics and Astronautics, Zhili Hu performed phase-field simulations of crystal branching. Xiang Gao of ORNL and Mengkun Tian (formerly of the University of Tennessee) analyzed the atomic structure of the crystals by scanning transmission electron microscopy.

"The results present exciting opportunities to take two-dimensional materials and vertically integrate them into the third dimension for next-generation electronics," said Xiao.

Next the researchers will explore whether strain can enhance the performance of tailored materials. "We're exploring how the strain of the crystal can make it easier to induce a phase change so the crystal can take on entirely new properties," Xiao said. "At the Center for Nanophase Materials Sciences, we're developing tools that will allow us to probe these structures and their quantum information aspects."

###

The title of the paper is "Strain tolerance of two-dimensional crystal growth on curved surfaces."

####

For more information, please click here

Contacts:
Dawn Levy

865-576-6448

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Imaging

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Better microring sensors for optical applications May 10th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

2 Dimensional Materials

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

UCI scientists create new class of two-dimensional materials: Fabrication could help unlock new quantum computing and energy technologies June 6th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Laboratories

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

NIST physicists 'teleport' logic operation between separated ions May 30th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

Nanofabrication

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Govt.-Legislation/Regulation/Funding/Policy

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Possible Futures

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Discoveries

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Tools

University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam June 14th, 2019

nPoint piezo driven nanopositioning flexure stages now available from Elliot Scientific June 4th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Nanometrics Announces Participation in Upcoming Investor Conferences May 3rd, 2019

Research partnerships

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Chemists build a better cancer-killing drill: Rice U.-designed molecular motors get an upgrade for activation with near-infrared light May 29th, 2019

Quantum nanoscience

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project