Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New Argonne coating could have big implications for lithium batteries

Argonne scientists have developed a new coating (shown in blue) for battery cathodes that can improve the electronic and ionic conductivity of a battery while improving its safety and cycling performance.

CREDIT
Argonne National Laboratory
Argonne scientists have developed a new coating (shown in blue) for battery cathodes that can improve the electronic and ionic conductivity of a battery while improving its safety and cycling performance. CREDIT Argonne National Laboratory

Abstract:
Coating provides extra layer of protection for battery cathodes.

Building a better lithium-ion battery involves addressing a myriad of factors simultaneously, from keeping the battery's cathode electrically and ionically conductive to making sure that the battery stays safe after many cycles.

New Argonne coating could have big implications for lithium batteries

Argonne, IL | Posted on May 14th, 2019

In a new discovery, scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have developed a new cathode coating by using an oxidative chemical vapor deposition technique that can help solve these and several other potential issues with lithium-ion batteries all in one stroke.

"The coating we've discovered really hits five or six birds with one stone." Khalil Amine, Argonne distinguished fellow and battery scientist.

In the research, Amine and his fellow researchers took particles of Argonne's pioneering nickel-manganese-cobalt (NMC) cathode material and encapsulated them with a sulfur-containing polymer called PEDOT. This polymer provides the cathode a layer of protection from the battery's electrolyte as the battery charges and discharges.

Unlike conventional coatings, which only protect the exterior surface of the micron-sized cathode particles and leave the interior vulnerable to cracking, the PEDOT coating had the ability to penetrate to the cathode particle's interior, adding an additional layer of shielding.

In addition, although PEDOT prevents the chemical interaction between the battery and the electrolyte, it does allow for the necessary transport of lithium ions and electrons that the battery requires in order to function.

"This coating is essentially friendly to all of the processes and chemistry that makes the battery work and unfriendly to all of the potential reactions that would cause the battery to degrade or malfunction," said Argonne chemist Guiliang Xu, the first author of the research.

The coating also largely prevents another reaction that causes the battery's cathode to deactivate. In this reaction, the cathode material converts to another form called spinel. "The combination of almost no spinel formation with its other properties makes this coating a very exciting material," Amine said.

The PEDOT material also demonstrated the ability to prevent oxygen release, a major factor for the degradation of NMC cathode materials at high voltage. "This PEDOT coating was also found to be able to suppress oxygen release during charging, which leads to better structural stability and also improves safety," Amine said.

Amine indicated that battery scientists could likely scale up the coating for use in nickel-rich NMC-containing batteries. "This polymer has been around for a while, but we were still surprised to see that it has all of the encouraging effects that it does," he said.

With the coating applied, the researchers believe that the NMC-containing batteries could either run at higher voltages -- thus increasing their energy output -- or have longer lifetimes, or both.

"The coating we've discovered really hits five or six birds with one stone," said Argonne distinguished fellow and battery scientist Khalil Amine, who led the research.

To perform the research, the scientists relied on two DOE Office of Science User Facilities located at Argonne: the Advanced Photon Source (APS) and the Center for Nanoscale Materials (CNM). In situ high-energy X-ray diffraction measurements were taken at beamline 11-ID-C of the APS, and focused ion beam lithography and transmission electron microscopy were performed at the CNM.

###


The research was funded by DOE's Office of Science, Office of Basic Energy Sciences and the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office.

The Office of Energy Efficiency and Renewable Energy supports early-stage research and development of energy efficiency and renewable energy technologies to strengthen U.S. economic growth, energy security, and environmental quality.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

For more information, please click here

Contacts:
Benjamin Schiltz

630-252-5640

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A paper based on the study, "Building ultra-conformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes," appeared in the May 13 online edition of Nature Energy. Other Argonne authors included Yuzi Liu, Xiang Liu, Han Gao, Minghao Zhuang, Yang Ren and Zonghai Chen. Researchers from Drexel University, Indiana University-Purdue University Indianapolis, and four Chinese universities also collaborated.:

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Imaging

Better microring sensors for optical applications May 10th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

Possible Futures

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Tools

Nanoscale thermometers from diamond sparkles: A novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale has been developed May 3rd, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Nanometrics Announces Participation in Upcoming Investor Conferences May 3rd, 2019

Micro-LEDs achieve superior brightness with Picosun’s ALD technology April 23rd, 2019

Automotive/Transportation

Transforming waste heat into clean energy: Researchers use supercomputers to explore new materials for thermoelectric generation May 2nd, 2019

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Army discovery opens path to safer batteries May 10th, 2019

Self-powered wearable tech May 8th, 2019

Transforming waste heat into clean energy: Researchers use supercomputers to explore new materials for thermoelectric generation May 2nd, 2019

Research partnerships

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project