Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components

The most effective spherical nucleic acid-based vaccine for cancer immunotherapy featured a peptide antigen (in green) interspersed with DNA.
The most effective spherical nucleic acid-based vaccine for cancer immunotherapy featured a peptide antigen (in green) interspersed with DNA.

Abstract:
Spherical nucleic acids (SNAs) could be breakthrough for cancer immunotherapy
Study compared three SNA-based vaccines with the same components but different architectures
Change in structure dramatically affected the immune response generated by the vaccine
Researcher: ‘This shows promise in our ability to improve the performance of vaccines and eventually use them in patient care’

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components

Evanston, IL | Posted on May 6th, 2019

When it comes to the effectiveness of nanotherapeutic vaccines, shape matters.



A Northwestern University team investigated a set of spherical nucleic acids (SNAs) for their potential to stimulate cancer-quelling immune responses. After comparing a series of compositionally identical yet structurally different vaccines by testing them on multiple animal models, the researchers found the structure of SNAs in one vaccine dramatically outperformed the others, which ranged from ineffective to nearly curative.



Vaccines with the superior structure completely eliminated tumors in 30% of animals and improved their overall survival from cancer. The vaccine also protected the animals from reemerging tumors.



“This observation shows the importance of chemical structure and three-dimensional presentation of active components in the design of vaccines,” said Northwestern’s Chad A. Mirkin, who co-led the study. “This information will help us rationally design SNA vaccines that can raise the strongest possible anti-cancer immune responses. Having a clear design strategy also will accelerate the development of vaccines for many types of cancer and potentially other diseases.”



The study will be published online during the week of May 6 in the Proceedings of the National Academy of Sciences.



Mirkin is the George B. Rathmann Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences and director of the International Institute for Nanotechnology. He co-led the study with Bin Zhang, professor of medicine and microbiology-immunology at the Northwestern University Feinberg School of Medicine, and Andrew Lee, research assistant professor of chemical and biological engineering in Northwestern’s McCormick School of Engineering.



Cancer immunotherapies artificially stimulate the patient’s immune system to find and attack the disease. So far, new immunotherapies, called checkpoint inhibitors, act by unlocking immune responses that are suppressed by tumors. But they are effective only in certain types of cancer and in a fraction of patients.



“Another potentially more powerful approach is to raise and boost immune responses with therapeutic vaccines,” Lee said. “This approach, however, has needed breakthroughs in vaccine design to unlock its potential in treating cancer in the clinic.”



The development of SNAs could be the breakthrough for which people have been waiting. Invented by Mirkin, SNAs are synthetic globular — rather than linear — forms of DNA and RNA that surround a nanoparticle core. Roughly 50 nanometers in diameter, the tiny structures possess the ability to enter cells, including immune cells, for targeted treatment delivery.



In the study, the Northwestern team compared SNAs that have different structures but the same peptides, DNA and other general components. All vaccines included an antigen (a substance that is recognized and targeted by an immune response) and an adjuvant (a substance that enhances the body’s immune response to the antigen). In this case, the DNA is the adjuvant, and the peptide is the antigen.



The only thing that changed in each vaccine was the position of the peptide antigen, which was either housed in the core of the SNA, interspersed with the DNA or attached to the DNA. These changes led to major differences in how the immune system recognized and processed molecular cues, ultimately affecting the quality of the immune response generated by the vaccine. In the study, the peptide antigen interspersed with the DNA performed best.



“The study shows that SNAs and our ability to refine SNA structures can dramatically improve the anti-tumor immune responses,” Zhang said. “This shows promise in our ability to improve the performance of vaccines and eventually use them in patient care.”



Mirkin is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University and has appointments in the Feinberg School of Medicine and McCormick School of Engineering.



The study, “Rational vaccinology with spherical nucleic acids,” was supported by the National Cancer Institute of the National Institutes of Health (award number U54CA199091), the Office of Naval Research (award number N00014-15-0043), the Prostate Cancer Foundation, the Movember Foundation (award number 17CHAL08), the Robert H. Lurie Comprehensive Cancer Center of Northwestern University and the Vannevar Bush Faculty Fellowship program.

####

For more information, please click here

Contacts:
Amanda Morris at 847-467-6790 or

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Cancer

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Possible Futures

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Nanomedicine

Better microring sensors for optical applications May 10th, 2019

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Discovery may lead to new materials for next-generation data storage: Army-funded research demonstrates emergent chirality in polar skyrmions for the first time in oxide superlattices May 10th, 2019

Nanobiotechnology

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Arrowhead Pharmaceuticals to Present at Upcoming May 2019 Conferences May 3rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project