Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Mystery of negative capacitance in perovskite solar cells solved

Abstract:
On the verge of outcompeting current thin-film solar cells, perovskite solar cells seem to embody an ideal solar cell: highly efficient and low-cost - if there was not the issue of a weak long-term stability, which remains a challenge. Related to this are peculiar phenomena occurring in perovskite materials and devices, where very slow microscopic processes can furnish them with a kind of "memory effect".

Mystery of negative capacitance in perovskite solar cells solved

Lausanne, Switzerland | Posted on April 5th, 2019

For instance, measuring the efficiency of a perovskite solar cell can depend on things like how long the device is illuminated prior to measurement or how the voltage was applied. A few years ago, this effect, known as current-voltage hysteresis, led to disputes on how to accurately determine the efficiency of perovskites. Another example of these obscure processes is a (partial) recovery of a previously degraded solar cell during day-night cycling.

Such effects are a concern when measuring the solar cells' performance as a function of frequency, which is a typical measurement for characterizing these devices in more detail (impedance spectroscopy). They lead to large signals at low frequencies (Hz to mHz) and giant capacitance values for the (mF/cm2), including strange, "unphysical" negative values that are still a puzzle to the research community.

Now, chemical engineers from the lab of Anders Hagfeldt at EPFL have solved the mystery. Led by Wolfgang Tress, a scientist in Hagfeldt's lab, they found that the large perovskite capacitances are not classical capacitances in the sense of charge storage, but just appear as capacitances because of the cells' slow response time.

The researchers show this by measurements in the time domain and with different voltage scan rates. They find that the origin of the apparent capacitance is a slow modification of the current passing the contact of the solar cells, which is regulated by a slow accumulation of mobile ionic charge. A slowly increasing current appears like a negative capacitance in the impedance spectra.

The work sheds light onto the interaction between the photovoltaic effect in these devices and the ionic conductivity of perovskite materials. Gaining such in-depth understanding contributes to the endeavor to tailored, stable perovskite solar cells.

###

Other contributors

Sharif University of Technology (Iran)

Funding

Swiss National Science Foundation (Ambizione Energy grant)
Ministry of Science, Research, and Technology of Iran
Iranian Nano Technology Initiative Council

Reference

Firouzeh Ebadi, Nima Taghavinia, Raheleh Mohammadpour, Anders Hagfeldt, Wolfgang Tress. Origin of apparent light-enhanced and negative capacitance in perovskite solar cells. Nature Communications 05 April 2019. DOI: 10.1038/s41467-019-09079-z

####

For more information, please click here

Contacts:
Nik Papageorgiou

41-216-932-105

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Perovskites

Making solar cells is like buttering bread March 22nd, 2019

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Discoveries

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

Materials/Metamaterials

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene April 5th, 2019

Tuneable reverse photochromes in the solid state April 3rd, 2019

From medicine to nanotechnology: how gold quietly shapes our world April 2nd, 2019

Announcements

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

Energy

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

Fullerenes bridge conductive gap in organic photovoltaics: Efficient cathode interlayers made of ionene polymers refined with pendant fullerenes March 29th, 2019

A Research Hat-Trick: Mechanical engineering professor Bolin Liao receives third early-career award since September March 26th, 2019

Solar/Photovoltaic

Fullerenes bridge conductive gap in organic photovoltaics: Efficient cathode interlayers made of ionene polymers refined with pendant fullerenes March 29th, 2019

A Research Hat-Trick: Mechanical engineering professor Bolin Liao receives third early-career award since September March 26th, 2019

Making solar cells is like buttering bread March 22nd, 2019

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project