Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Magnetoresistive sensors for near future innovative development

Bristol Robotics Laboratory, Stoke Gifford, United Kingdom

CREDIT
Louis Reed@_louisreed, Unsplash
Bristol Robotics Laboratory, Stoke Gifford, United Kingdom CREDIT Louis Reed@_louisreed, Unsplash

Abstract:
Excluding the information recording and reading technology, in the next 15-20 years, the hypersensitive sensors operating under the magnetoresistive principle will be applied in an extensive number of innovative areas. Among them are biomedicine, flexible electronics, position sensors, and human-computer interaction, various types of monitoring, navigation and autonomous transport. An article about this was published in the industry journal IEEE Transactions on Magnetics.

Magnetoresistive sensors for near future innovative development

Vladivostok, Russia | Posted on March 22nd, 2019

Scientists of Far Eastern Federal University (FEFU) teamed up with an international group of experts to identify five of the most promising application areas for magnetoresistive sensors. Having carried out a comprehensive analytical work, the researchers drew up development roadmaps of the sensor industry for the next 15-20 years and outlined the most probable ways to commercialize scientific results in this research area.

"Magnetoresistive sensors are distinguished by high sensitivity, low cost, low power consumption, and compactness. Their properties vary depending on the application. Today, this industry develops rapidly, sensors sensitivity increases constantly, the path from research to real technology takes a short time. We believe there is a very wide application area for such sensors. For example, in biomedicine, due to supersensitive sensors that receive signals from the magnetically marked organs of the human body and DNA molecules, it will be possible to accurately determine potential genetic diseases and select a treatment that fits best. Corresponding systems may appear around 2030." Said Alexander Samardak, Associate professor of the Department of Computer Systems, FEFU School of Natural Sciences.

The scientist went on that the application of magnetoresistive technology is promising in such flexible portable electronic gadgets like smartphones, wristbands etc. Devices operating on such sensors are capable of withstanding a large number of flexion/extension and stretching cycles without loss of sensitivity properties. The sensors' resistance to mechanical deformation is proceeding to increase along with further progress in this area. Users will experience flexible devices in 2023 - 2025, and super flexible - around 2030. By this time, give or take, highly sensitive and not expensive in production durable sensors capable of detecting fast-flowing processes should appear. Instead of a silicon substrate, it will be possible to print them even on paper and textiles.

As for the human-computer interaction systems, the sensor-controlled wheelchair commanded by the head movement was developed back in 2003.

"Today, the movements of different parts of the human body can be effectively captured, processed, and recorded by means of magnetoresistive and inertial sensors. Highly likely, such data will soon come in handy for the development of AR and VR systems and applications," added Alexey Ognev, a professor at the Department of Computer Systems, FEFU School of Natural Sciences.

One of the laboratories for the development of such VR and VR systems operates in FEFU within the National Technology Initiative Center for Virtual and Augmented Reality opened in the university.

AR / VR devices equipped with high sensitivity sensors may appear in the very next upcoming years. Ubiquitous control joysticks will be replaced with human-wearable controllers. Sensors integrated into biomechanical artificial limbs will increase the accuracy of their movements.

Approximately by 2032 autonomous vehicles systems will be fully accomplished and safely operate and managed without human participation.

Alexander Samardak pointed out that magnetic sensor networks are used to implement projects in the following areas: smart homes, smart medicine, including psychological help and assistance for people with disabilities, as well as a fundamentally different level of smart transport. All human life will be literally interlaced by sensory systems. Large amounts of readout data will be stored in the "cloud" and will be available for a person remotely from a smartphone or other personal gadgets. With time, a need in stable, reliable and cheap in the production smart sensors will only increase.

Scientists note that the closest competitors of magnetoresistive sensors on the market are sensors operates under the principle of Hall effect.

###

Researchers from Russia, China, Taiwan, South Korea, Singapore, the Czech Republic, Portugal, the UK, and the USA took part in the analytical work.

Scientists drew their conclusions based on the analysis of patent statistics over the past 60 years. They also have studied specialized scientific publications, taking into account the state of the art and rapid progress of the magnetoresistive technology industry.

FEFU runs a priority project "Materials" and the NTI Center for Virtual and Augmented Reality (Grant No. 1/1251/2018, October 16, 2018), where among other things researchers are actively engaged in the study of magnetoresistive sensor systems and properties of magnetic materials.

####

For more information, please click here

Contacts:
Alexander Zverev

Copyright © Far Eastern Federal University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Magnetism

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

IKBFU and University of Oviedo Physicists tested new research model on magnetic materials: Soft magnetic ferromagnetic microwires are used for magnetic field sensors, as well as for encoding and reading information April 24th, 2020

A new strategy to create 2D magnetic order April 10th, 2020

Magnet research takes giant leap April 10th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

Possible Futures

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Sensors

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Making quantum 'waves' in ultrathin materials: Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale May 15th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

MOF material offers optical sensing of NO2 pollutant for air quality measurements April 30th, 2020

Discoveries

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

A stitch in time: How a quantum physicist invented new code from old tricks: Error suppression opens pathway to universal quantum computing May 22nd, 2020

Announcements

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Patents/IP/Tech Transfer/Licensing

A new study published on the cover of Science could bolster the development of batteries, fuel cells, 3D printing technologies and more May 1st, 2020

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

Supercharging tomorrow: Monash develops world's most efficient lithium-sulfur battery January 3rd, 2020

Automotive/Transportation

Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes May 14th, 2020

Wiring the quantum computer of the future: A novel simple build with existing technology: The basic units of a quantum computer can be rearranged in 2D to solve typical design and operation challenges April 24th, 2020

“Atomic Force Microscopy Can Help Expand the Tire Industry’s “Magic Triangle” April 15th, 2020

Pathways toward realizing the promise of all-solid-state batteries March 13th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project