Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society

Junkai Jiang, right, receives his award from IEEE EDS president D. Fernando Guarin, left, along with fellow recipient Yuanyuan Shi, a doctoral student in Spain
Junkai Jiang, right, receives his award from IEEE EDS president D. Fernando Guarin, left, along with fellow recipient Yuanyuan Shi, a doctoral student in Spain

Abstract:
The steady improvement of the performance and versatility of our electronic systems is due in large part to the scaling-down of transistors and interconnects that drive them. Components on the chips have been shrunk, stacked and more densely packed to add increased functionality without expanding the systems’ small footprints.

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society

Santa Barbara, CA | Posted on March 14th, 2019

But the smaller, denser arrangements present their own set of challenges, and electronics engineers and designers everywhere are trying to find ways to overcome the resulting degradation in performance, reliability and energy efficiency.

UC Santa Barbara doctoral student Junkai Jiang is one of those people, and for his work he has been awarded a prestigious Ph.D. Student Fellowship from the Institute of Electrical and Electronics Engineers’ Electron Devices Society (EDS).

“The IEEE EDS Ph.D. Student Fellowship is one of the most prestigious awards for doctoral students working in the broad area of electron devices,” said UC Santa Barbara electrical and computer engineering professor Kaustav Banerjee, who is Jiang’s advisor. Junkai’s achievements in his research are certainly most deserving of this honor.”

A leader in the field of nanoelectronics, Banerjee is internationally recognized for his pioneering work on 2D materials and electronics. Jiang joined Banerjee’s Nanoelectronics Research Lab (NRL) in 2012 as a dual M.S./Ph.D. student after completing his bachelor of science degree in microelectronics at Peking University in China.

“I am extremely honored to receive this prestigious award from the IEEE Electron Devices Society that recognizes technological innovations by young Ph.D. student researchers,” Jiang said. “Being the only student from the entire Americas and the third student from the NRL at UC Santa Barbara to receive this award, I would like to especially thank my advisor, Professor Kaustav Banerjee, not only for his constant encouragement and support, but also for his inspirational guidance to identify and pursue cutting-edge research of the highest caliber, which helped me to progress steadily during the past several years of my doctoral research.”

Jiang’s work centers on interconnects — the conducting channels of electronic signal and power between and through components. Interconnects play a dominant role in determining the performance and power-dissipation of all integrated circuits, including state-of-the-art microprocessors. As the dimensions of on-chip components have scaled down and their number has increased, the conventional copper wire interconnects have also had to shrink, causing them to hit limits in terms of their ability to conduct signal and power rapidly, reliably and without interference. As a result, the systems may slow down, overheat and drain their batteries sooner than expected.

The answer to this problem could come in the form of graphene, a two-dimensional form of carbon with interesting and valuable electronic properties.

“My research is focused on designing and fabricating fast, energy-efficient and highly reliable on-chip interconnects and passives uniquely enabled by low-dimensional carbon nanomaterials such as graphene,” Jiang explained.

Graphene, with its atom-thick dimension and electronic conduction properties, has emerged as a viable replacement for copper wire interconnects primarily driven by Banerjee over the past decade. But its ability to revolutionize modern electronics is directly related to the ease of large-scale manufacture, which also is a thrust of Jiang’s research.

“Supported by this award, I have been working on integrating graphene in the high-volume-manufacturing friendly or ‘CMOS-compatible’ process and its application in demonstrating a multilayer VLSI (Very Large Scale Integrated Circuit) interconnect scheme to establish its feasibility for the semiconductor industry,” Jiang added.

“I offer sincere congratulations to Junkai Jiang for receiving this prestigious award, and to Professor Banerjee for the support that is indispensable to such achievement,” said Rod Alferness, dean of the UC Santa Barbara College of Engineering. “Given to only a single student in the Americas and only three in the world, this award is a major testament not only to Junkai, but also to the kind of students we attract at UCSB and the pioneering spirit they bring to tackling important problems.”

The IEEE Electron Devices Society Ph.D. Student Fellowship Award recognizes a demonstrated ability to perform independent research in the fields of electron devices and a proven history of academic excellence. Among Jiang’s other early-career accomplishments are receipt of the UCSB Graduate Division Dissertation award (2019) and the IEEE S3S Best Student Paper Award (2018). His research contributions have appeared in prestigious international journals, including Nature Electronics, Nano Letters and IEEE Transactions on Electron Devices, as well as leading IEEE conferences such as the annual International Electron Devices Meeting (IEDM) and the International Reliability Physics Symposium (IRPS).

To allow circuit level design and optimization, Jiang also developed a SPICE-compatible compact model for graphene interconnects, which was made available to the worldwide research community via nanoHUB, a well-known educational hub for the nanoelectronics community. His model currently has over 3000 users. In 2018, Jiang was one of the key contributors to the demonstration of the world’s first kinetic inductor, led by Banerjee, that overcame a 200-year old limitation of conventional inductors.

IEEE is the world’s largest technical professional organization for the advancement of technology. The Electron Devices Society (EDS), which began in 1952, is a technical society of the IEEE with more than 11,000 members worldwide.

####

For more information, please click here

Contacts:
Sonia Fernandez
(805) 893-4765
sonia(dot)fernandez(at)ucsb(dot)edu

Copyright © University of California, Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project