Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells

The two types of 'chiral surface excitons' are on the right and left side of the image. They are generated by right- and left-handed light (photons in blue). The excitons consist of an electron (light blue) orbiting a 'hole' (black) in the same orientation as the light. The electron and hole are annihilated in less than a trillionth of a second, emitting light (photons in green) that could be harnessed for lighting, solar cells, lasers and electronic displays.

CREDIT
Hsiang-Hsi (Sean) Kung/Rutgers University-New Brunswick
The two types of 'chiral surface excitons' are on the right and left side of the image. They are generated by right- and left-handed light (photons in blue). The excitons consist of an electron (light blue) orbiting a 'hole' (black) in the same orientation as the light. The electron and hole are annihilated in less than a trillionth of a second, emitting light (photons in green) that could be harnessed for lighting, solar cells, lasers and electronic displays. CREDIT Hsiang-Hsi (Sean) Kung/Rutgers University-New Brunswick

Abstract:
Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells

New Brunswick, NJ | Posted on February 18th, 2019

It's called a "chiral surface exciton," and it consists of particles and anti-particles bound together and swirling around each other on the surface of solids, according to a study in the Proceedings of the National Academy of Sciences.

Chiral refers to entities, like your right and left hands, that match but are asymmetrical and can't be superimposed on their mirror image.

Excitons form when intense light shines on solids, kicking negatively charged electrons out of their spots and leaving behind positively charged "holes," according to lead author Hsiang-Hsi (Sean) Kung, a graduate student in Physics Professor Girsh Blumberg's Rutgers Laser Spectroscopy Lab at Rutgers University-New Brunswick.

The electrons and holes resemble rapidly spinning tops. The electrons eventually "spiral" towards the holes, annihilating each other in less than a trillionth of a second while emitting a kind of light called "photoluminescence." This finding has applications for devices such as solar cells, lasers and TV and other displays.

The scientists discovered chiral excitons on the surface of a crystal known as bismuth selenide, which could be mass-produced and used in coatings and other materials in electronics at room temperature.

"Bismuth selenide is a fascinating compound that belongs to a family of quantum materials called 'topological insulators,'" said senior author Blumberg, a professor in the Department of Physics and Astronomy in the School of Arts and Sciences. "They have several channels on the surface that are highly efficient in conducting electricity."

The dynamics of chiral excitons are not yet clear and the scientists want to use ultra-fast imaging to further study them. Chiral surface excitons may be found on other materials as well.

###

Rutgers co-authors include doctoral students Xueyun Wang and Alexander Lee, and Board of Governors Professor Sang-Wook Cheong in Rutgers Center for Emergent Materials, who developed the ultra-pure crystals for this study. Professor Dmitrii Maslov and graduate student Adamya Goyal at the University of Florida and principal investigator Alexander Kemper at North Carolina State University contributed to theory development and the interpretation of results.

####

For more information, please click here

Contacts:
Todd Bates

848-932-0550

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Display technology/LEDs/SS Lighting/OLEDs

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Physics

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Possible Futures

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Discoveries

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Announcements

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Energy

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Avoiding the Crack of Doom: New imaging technique reveals how mechanical damage begins at the molecular scale February 25th, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Research partnerships

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

AIM Photonics Attends OFC 2019—the Optical Networking and Communication Conference & Exhibition to Share World-Class Capabilities and Partnership Opportunity Updates February 28th, 2019

Solar/Photovoltaic

Layering titanium oxide's different mineral forms for better solar cells: Kanazawa University-led researchers layer two different mineral forms of titanium oxide to improve electron flow at the negative electrode for better metal halide perovskite-type solar cells March 2nd, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Self-assembling nanomaterial offers pathway to more efficient, affordable harnessing of solar power: The new materials produce a singlet fission reaction that creates more and extends the life of harvestable electronic charges January 24th, 2019

Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter) January 24th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project