Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices

Abstract:
The European Project “Dissipationless topological channels for information transfer and quantum metrology” (TOCHA) is launching today a consortium of 9 leading institutions from 6 European countries. TOCHA proposes radically new technologies taking advantage of the unique properties of topological matter that can prove crucial for information processing, quantum communication and metrology. It is funded with 5 Million Euros for the next five years and is coordinated by the Institut Catalŕ de Nanocičncia i Nanotecnologia (ICN2).

TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices

Barcelona, Spain | Posted on January 31st, 2019

Scientific advances are bringing society closer to a new generation of devices with such energy and precision demands that a new catalogue of materials with enhanced properties is needed. The “Dissipationless topological channels for information transfer and quantum metrology” (TOCHA) Project has the ambition of harnessing topological concepts for future generation of devices and architectures across which information can flow without losses. This initiative, starting January 2019 and coordinated by the ICREA Prof. Sergio O. Valenzuela from the ICN2, is funded under the Horizon 2020 EU research and development programme. The Kick-Off meeting of the project is gathering today and tomorrow in Barcelona representatives of all the members of the consortium. Prof. Pablo Ordejón, Director of the ICN2, is among the attendees.

TOCHA will investigate topological protection, a property that provides stability to a system, in novel materials and nanoscopic structures. Its objective is to empower electrons (subatomic particles with negative electric charge), photons (quantum particles of electromagnetic radiation, such as light) and phonons (quantum particles transferring sound or heat) to flow with little or no dissipation and, ultimately, crosslink them within a hybrid platform. This will entail the design of novel topological photonic/phononic waveguides and the engineering of disruptive heterostructures elaborated from the combination of topological insulators and ferromagnetic materials. Overcoming this technological and fundamental challenge is crucial for the development of technologies in fields ranging from information processing to quantum communication and metrology. In each of these areas, the dissipation of information is a key hurdle that leads, for example, to unacceptable thermal loads or error rates.

A leap forward towards a deeper level of basic understanding of topological systems is needed to accelerate the evolution of these materials from fundamental science to engineering and technology. For this reason the TOCHA project proposes to take advantage of the unique properties of emerging materials through research involving electronic materials, optics, thermal management and metrology. The coordinated efforts of 11 research units from 7 leading European Academic Institutions, 1 Technology and Innovation Centre and 1 enterprise expert in atomistic simulations distributed over 6 countries, will focus on advancing all levels of the value chain to enhance the handling and transport of (quantum) information and metrology for an upcoming generation of advanced devices.

TOCHA Project details:
The EU FET PROACTIVE project TOCHA has a 5-years duration, starting January 2019 and concluding December 2023. As part of the funding program Horizon 2020, the project is supported by the European Commission with a budget of 4.9 Million Euros.

The Participating Institutions and Industry Partners are:

Center for Nanosciences and Nanotechnologies (C2N-CNRS) - France
Commissariat ŕ l’énergie atomique et aux énergies alternatives (CEA) - SPINTEC (SPINtronique et TEchnologie des Composants) - France
Institut Catalŕ de Nanocičncia i Nanotecnologia (ICN2) – Spain
Project Coordinator with three research Groups involved (Physics and Engineering of Nanodevices Group; Photonic and Phononic Nanostructures Group; and, Theoretical and Computational Nanoscience Group)
Institute of Optical Materials and Technologies - Bulgary
Physikalisch-Technische Bundesanstalt (PTB) – Germany
Simune Atomistics S.L. – Spain
University of Würzburg - Germany
University of Copenhagen - Denmark
VTT Technical Research Centre of Finland - Finland
Lear more at: www.tocha-project.eu

####

For more information, please click here

Contacts:
Alex Argemi

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Physics

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Spontaneous synchronisation achieved at the nanoscale July 4th, 2019

New study shows nanoscale pendulum coupling July 3rd, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Magnetism

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

New interaction between thin film magnets discovered: Physicists of Johannes Gutenberg University Mainz lay the foundations for new three-dimensional spin structures June 7th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Quantum communication

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Secure metropolitan quantum networks move a step closer May 31st, 2019

NIST physicists 'teleport' logic operation between separated ions May 30th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Caught in the act: Images capture molecular motions in real time July 15th, 2019

An 'EpiPen' for spinal cord injuries July 12th, 2019

The best of both worlds: how to solve real problems on modern quantum computers July 12th, 2019

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Possible Futures

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials July 12th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

Optical computing/Photonic computing

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

Announcements

Nanometrics to Announce Second Quarter Financial Results on July 30, 2019 July 17th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Caught in the act: Images capture molecular motions in real time July 15th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Photonics/Optics/Lasers

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

'Tsunami' on a silicon chip: a world first for light waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chip July 5th, 2019

Alliances/Trade associations/Partnerships/Distributorships

CEA’s Precise Localization Technology Boosts Quality Control & Efficiency in Desoutter Tools: Algorithm and Embedded Receptors in Desoutter’s Electric & Power Tools Deliver Real-Time Monitoring & Help Meet Industry 4.0 Goals June 26th, 2019

Dashing the dream of ideal 'invisibility' cloaks for stress waves June 7th, 2019

Analog Bits and GLOBALFOUNDRIES Deliver Differentiated Analog and Mixed Signal IP for High-Performance Mobile and Compute Applications: Analog Bits’ Analog and Mixed Signal IPs Including Various PLLs, PCIe Reference Clock, Sensors and Power Circuits with GLOBALFOUNDRIES 12nm Fin June 5th, 2019

nPoint piezo driven nanopositioning flexure stages now available from Elliot Scientific June 4th, 2019

Research partnerships

The best of both worlds: how to solve real problems on modern quantum computers July 12th, 2019

Sheaths drive powerful new artificial muscles July 11th, 2019

Activity of fuel cell catalysts doubled: Modelling leads to the optimum size for platinum fuel cell catalysts July 5th, 2019

Spontaneous synchronisation achieved at the nanoscale July 4th, 2019

Quantum nanoscience

Dresden physicists use nanostructures to free photons for highly efficient white OLEDs: Trapped light particles July 12th, 2019

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project