Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Satellite study proves global quantum communication will be possible

Abstract:
Researchers in Italy have demonstrated the feasibility of quantum communications between high-orbiting global navigation satellites and a ground station, with an exchange at the single photon level over a distance of 20,000km.

Satellite study proves global quantum communication will be possible

Washington, DC | Posted on December 28th, 2018

The milestone experiment proves the feasibility of secure quantum communications on a global scale, using the Global Navigation Satellite System (GNSS). It is reported in full today in the journal Quantum Science and Technology.

Co-lead author Dr Giuseppe Vallone is from the University of Padova, Italy. He said: "Satellite-based technologies enable a wide range of civil, scientific and military applications like communications, navigation and timing, remote sensing, meteorology, reconnaissance, search and rescue, space exploration and astronomy.

"The core of these systems is to safely transmit information and data from orbiting satellites to ground stations on Earth. Protection of these channels from a malicious adversary is therefore crucial for both military and civilian operations.

"Space quantum communications (QC) represent a promising way to guarantee unconditional security for satellite-to-ground and inter-satellite optical links, by using quantum information protocols as quantum key distribution (QKD)."

The team's results show the first exchange of a few photons per pulse between two different satellites in the Russian GLONASS constellation and the Space Geodesy Centre of the Italian Space Agency.

Co-lead author Professor Paolo Villoresi said: ""Our experiment used the passive retro-reflectors mounted on the satellites. By estimating the actual losses of the channel, we can evaluate the characteristics of both a dedicated quantum payload and a receiving ground station.

"Our results prove the feasibility of QC from GNSS in terms of achievable signal-to-noise ratio and detection rate. Our work extends the limit of long-distance free-space single-photon exchange. The longest channel length previously demonstrated was around 7,000 km, in an experiment using a Medium-Earth-Orbit (MEO) satellite that we reported in 2016."

Although high-orbit satellites pose a large technological challenge, due to losses from optical channels, Professor Villoresi explained the team's reasoning for focussing on high-orbiting satellites in their study.

He said: "The high orbital speed of low earth orbit (LEO) satellites is very effective for the global coverage but limits their visibility periods from a single ground station. On the contrary, using satellites at higher orbits can extend the communication time, reaching few hours in the case of GNSS.

"QC could also offer interesting solutions for GNSS security for both satellite-to-ground and inter-satellite links, which could provide novel and unconditionally secure protocols for the authentication, integrity and confidentiality of exchanged signals."

Dr. Giuseppe Bianco, which is the Director of the Space Geodesy Centre of the Italian Space Agency and co-author, said "The single photon exchange with a GNSS satellite is an important result for both scientific and application perspectives. It fits perfectly in the Italian roadmap for Space Quantum Communications, and it is the latest achievement of our collaboration with the University of Padua which is steadily progressing since 2003."

####

For more information, please click here

Contacts:
Simon Davies

44-011-793-01110

Copyright © IOP Publishing

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum communication

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

Quantum Physics

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

News and information

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Possible Futures

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Discoveries

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Tiny bubbles in our body could fight cancer better than chemo September 18th, 2019

Announcements

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Appreciating the classical elegance of time crystals: Physicists at ETH Zurich have developed a versatile framework for studying periodically driven systems, providing a unifying platform to explore so-called 'time crystals' in both the classical and the quantum regime September 20th, 2019

'Nanochains' could increase battery capacity, cut charging time September 20th, 2019

SMART announces a revolutionary tech to study cell nanomechanics: New research discovery enables scientists to study membrane mechanics of cell's nucleus, revolutionising the understanding of metastatic cancers as well as opening the doors for identification of stem cells for the September 20th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project