Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti and Silvaco to Develop GAA SPICE Compact Models for Circuit Design and Technology Co-optimization: Project Combines CEA-Leti’s Compact Modeling Expertise And Silvaco’s Extensive Experience in SPICE Compact Model Integration and Extraction

Abstract:
Leti, a research institute of CEA-Tech, and Silvaco Inc., a leading global provider of software, IP and services for designing chips and electronic systems for semiconductor companies, today announced during the IEDM 2018 conference a project to create innovative and unified SPICE compact models for the design of advanced circuits using nanowire and nanosheet technologies.

CEA-Leti and Silvaco to Develop GAA SPICE Compact Models for Circuit Design and Technology Co-optimization: Project Combines CEA-Leti’s Compact Modeling Expertise And Silvaco’s Extensive Experience in SPICE Compact Model Integration and Extraction

San Francisco, CA | Posted on December 3rd, 2018

The new predictive and physical compact model under development, Leti-NSP, builds on Leti’s 15 years of model development, including the popular Leti-UTSOI model for FD-SOI technology. The Leti-NSP compact model uses a novel methodology for the calculation of the surface potential, including quantum confinement. The model is able to handle arbitrary cross-section shapes of stacked planar and vertical GAA MOSFETs (circular, square, rectangular). It provides an excellent tool for design exploration of nanowire and nanosheet device architectures.



This three-year collaboration will make the new device models available to designers through SmartSpiceTM, Silvaco’s high-performance parallel SPICE simulator for use by circuit designers. The corresponding model-parameters extraction flow will be implemented in Utmost IVTM, Silvaco’s database-driven environment for characterizing semiconductor devices, to ensure an accurate fit between simulated and measured device characteristics.



Accuracy of analysis at the nanometer scale is essential for co-optimization of silicon process technology and circuit performance. Besides accurate device characterization and simulation, a complete solution includes TCAD simulation, and 3D parasitic extraction. Silvaco’s partnership with leading research institutions for atomistic TCAD, and its proven in-house extraction solver technology, will provide the most accurate Design Technology Co-Optimization (DTCO) solution for nanometer technologies.



“Over two decades, CEA-Leti and Silvaco have collaborated on design-technology co-optimization, ranging from innovative TCAD simulation to the design of advanced nanoelectronics, and thus expanded and strengthened Silvaco’s suite of tools for designers,” said Emmanuel Sabonnadičre, CEA-Leti CEO. “This project continues that partnership, and when these physics-based compact models are made available to designers worldwide, they will be able to evaluate the potential of advanced nanowire-based CMOS technologies under development at CEA-Leti.”



“DTCO, including circuit simulation, is fundamental to the development of electronic devices, and shrinking silicon geometries are placing an even greater premium on accuracy to capture and evaluate all the new physical effects in nanometer design,” said Eric Guichard, vice president of Silvaco's TCAD Division. “Building on past successes of Leti and Silvaco’s collaboration, this project will provide circuit designers and technologists with powerful, advanced design flows that combine CEA-Leti’s physical, predictive, and easy-to-use models with Silvaco’s high-accuracy EDA tools.”

####

About Leti
CEA-Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.



CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

About Silvaco

Silvaco Inc. is a leading EDA tools and semiconductor IP provider used for process and device development for advanced semiconductors, power IC, display and memory design. For over 30 years, Silvaco has enabled its customers to develop next generation semiconductor products in the shortest time with reduced cost. We are a technology company outpacing the EDA industry by delivering innovative smart silicon solutions to meet the world’s ever-growing demand for mobile intelligent computing. The company is headquartered in Santa Clara, California and has a global presence with offices located in North America, Europe, Japan and Asia.

Press/Media Contact:

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

Possible Futures

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Chip Technology

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Improving quantum computers April 19th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Announcements

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

New fiber-shaped supercapacitor for wearable electronics April 19th, 2019

From nata de coco to computer screens: Cellulose gets a chance to shine: Researchers at Osaka University meticulously measured the optical birefringence of highly aligned cellulose nanofibers, paving the way for sharper television, computer, and smartphone screens April 19th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

Tools

New microscopy method provides more details about nanocomposites April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Nanometrics to Announce First Quarter Financial Results on April 30, 2019 April 10th, 2019

Izon Science heralds a new era in exosome isolation April 2nd, 2019

Industrial

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Defects help nanomaterial soak up more pollutant in less time: Rice U. researchers find new way to remove PFOS from industrial wastewater March 13th, 2019

Zips on the nanoscale: New method of synthesising nanographene on metal oxide surfaces March 5th, 2019

Alliances/Trade associations/Partnerships/Distributorships

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project