Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures

Abstract:
Leti, a research institute at CEA Tech, today announced during IEDM an extension of its 300mm silicon-based wafer line to open new R&D avenues for its industrial partners. This extension will allow new innovative technological modules to be inserted in, or made compatible with, industrial flows up to completely pioneered technology routes that enable edge AI, HPC, in memory computing, photonics, power electronics and other high-end applications.

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures

San Francisco, CA | Posted on December 3rd, 2018

CEA-Leti’s 300mm wafer-line extension will accelerate innovation projects with fab partners using 300mm wafers.



Targeted technological routes and related targeted applications for the 300mm line extension include:

memory: phase-change RAM (PCRAM), oxide-based resistive memory (OxRAM), conductive-bridging RAM (CBRAM)
vertical image sensors
photonics: III-V on silicon, integrated photonics…
power electronics: insulated-gate bipolar transistors (IGBT)
HPC and edge AI: FD-SOI and derivatives, such as sequential stacking and Si qbits for quantum computing
3D wafer-to-wafer or die-to-wafer bonding, hybrid bonding: substrates and layer transfer for advanced substrates in collaboration with Soitec.


CEA-Leti's advanced CMOS strategy targets FD-SOI research through the development of modules to the economic and technological limits of scaling, and complements the extension of the 300mm platform for edge-AI applications, analog applications, RF and power electronics.



This strategy is based on a mix of priorities of CEA-Leti’s partners and its researchers’ ideas that pioneer enabling technologies to address societal challenges. These include cloud and edge computation, high-volume communication, multi-modality interaction and energy conservation. Leti executes the strategy with its fully implemented technology, from beginning to end with module-level innovations, such as insulation or back-end copper, as well as devices and their architectures.



“Our 300mm line will help Leti continue this strategy by accessing dimensions that make it possible to address the pressing challenges associated with emerging technologies, such as quantum, nanowires and sequential 3D integration,” said Emmanuel Sabonnadière, CEA-Leti CEO. “CEA-Leti’s industrial partners are now able to develop or test their disruptive technologies and their designs on state-of-the-art equipment, while benefiting from the institute’s R&D expertise, to achieve improved component performance, direct comparison with the ecosystem and easier technology transfers from lab to fab.”



The implementation of this 300mm line is possible thanks to the financing of Auvergne Rhone Alpes region for the acquisition of a 193nm immersion lithography tool, which is the cornerstone of this investment plan (2017-2018). CEA-Leti also benefited from financial support of the French government for the second phase of this plan (2018-2019).

####

About Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. This year, the institute celebrates its 50th anniversary. Follow us on www.leti-cea.com and @CEA_Leti.

Follow us on www.leti.fr/en and @CEA_Leti.



CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Hardware

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Possible Futures

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Chip Technology

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Quantum Computing

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

Quantum chemistry on quantum computers: A quantum algorithm for tracking complex chemical reactions with neither performing demanding post-Hartree-Fock calculations nor exponential time explosion January 4th, 2019

Sensors

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Announcements

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Tools

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Industrial

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Straightforward biosynthesis of functional bulk nanocomposites February 5th, 2019

Artificial Intelligence

Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019

Cea-Leti and imec Launch Strategic Partnership to Develop AI and Quantum Computing November 23rd, 2018

Leti Middleware Will Be Core of Fog Platform for Decentralized Cloud-to-Edge AI: DECENTER Project to Integrate IoT, AI, the Cloud, Edge, Fog Computing and Smart Contracts Tied Together with Secure Blockchain in ‘New Ecosystem’ for On-Demand Edge Computing October 26th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Photonics/Optics/Lasers

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Sound and light trapped by disorder February 8th, 2019

CEA-Leti to Present 21 Papers at Photonics West & Unveil its Latest Research on Greater Photonics-Electronics and Software Convergence: Optics and Si-Photonics Teams Will Explain Transfer-Ready Solutions For Wavelength Imaging and Other Applications at Leti Booth, Feb. 5-7 February 1st, 2019

Printing/Lithography/Inkjet/Inks/Bio-printing

New composite advances lignin as a renewable 3D printing material December 28th, 2018

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project