Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Light-bending tech shrinks kilometers-long radiation system to millimeter scale

This accelerating light pulse (left) met expectations (right) that it would follow a curved trajectory and emit radiation at the terahertz frequencies of security technology and other sensing applications. (University of Michigan video/Meredith Henstridge)
This accelerating light pulse (left) met expectations (right) that it would follow a curved trajectory and emit radiation at the terahertz frequencies of security technology and other sensing applications. (University of Michigan video/Meredith Henstridge)

Abstract:
Synchrotron radiation from an accelerating light pulse

M. Henstridge1, C. Pfeiffer1, D. Wang2, A. Boltasseva2, V. M. Shalaev2, A. Grbic1, R. Merlin1

1University of Michigan, Ann Arbor, MI, USA

2Purdue University, West Lafayette, IN, USA

doi: 10.1126/science.aat5915

Synchrotron radiation—namely, electromagnetic radiation produced by charges moving in a curved path—is regularly generated at large-scale facilities where giga–electron volt electrons move along kilometer-long circular paths.We use a metasurface to bend light and demonstrate synchrotron radiation produced by a subpicosecond pulse, which moves along a circular arc of radius 100 micrometers inside a nonlinear crystal. The emitted radiation, in the terahertz frequency range, results from the nonlinear polarization induced by the pulse. The generation of synchrotron radiation from a pulse revolving about a circular trajectory holds promise for the development of on-chip terahertz sources.

Light-bending tech shrinks kilometers-long radiation system to millimeter scale

West Lafayette, IN | Posted on October 26th, 2018

The DESY accelerator facility in Hamburg, Germany, goes on for miles to host a particle making kilometer-long laps at almost the speed of light. Now researchers have shrunk such a facility to the size of a computer chip.

A University of Michigan team in collaboration with Purdue University created a new device that still accommodates speed along circular paths, but for producing lower light frequencies in the terahertz range of applications such as identifying counterfeit dollar bills or distinguishing between cancerous and healthy tissue.

"In order to get light to curve, you have to sculpt every piece of the light beam to a particular intensity and phase, and now we can do this in an extremely surgical way," said Roberto Merlin, the University of Michigan's Peter A. Franken Collegiate Professor of Physics.

The work is published in the journal Science. Ultimately, this device could be conveniently adapted for a computer chip.

"The more terahertz sources we have, the better. This new source is also exceptionally more efficient, let alone that it's a massive system created at the millimeter scale," said Vlad Shalaev, Purdue's Bob and Anne Burnett Distinguished Professor of Electrical and Computer Engineering.

The device that Michigan and Purdue researchers built generates so-called "synchrotron" radiation, which is electromagnetic energy given off by charged particles, such as electrons and ions, that are moving close to the speed of light when magnetic fields bend their paths.

Several facilities around the world, like DESY, generate synchrotron radiation to study a broad range of problems from biology to materials science.

But past efforts to bend light to follow a circular path have come in the form of lenses or spatial light modulators too bulky for on-chip technology.

A team led by Merlin and Meredith Henstridge, now a postdoctoral researcher at the Max Planck Institute for the Structure and Dynamics of Matter, substituted these bulkier forms with about 10 million tiny antennae printed on a lithium tantalite crystal, called a "metasurface," designed by the Michigan team of Anthony Grbic and built by Purdue researchers.

The researchers used a laser to produce a pulse of visible light that lasts for one trillionth of a second. The array of antennae causes the light pulse to accelerate along a curved trajectory inside the crystal.

Instead of a charged particle spiraling for kilometers on end, the light pulse displaced electrons from their equilibrium positions to create "dipole moments." These dipole moments accelerated along the curved trajectory of the light pulse, resulting in the emission of synchrotron radiation much more efficiently at the terahertz range.

"This isn't being built for a computer chip yet, but this work demonstrates that synchrotron radiation could eventually help develop on-chip terahertz sources," Shalaev said.

The research was supported by the National Science Foundation (grant DMR-1120923) and the Air Force Office of Scientific Research (grant FA9550-14-1-0389).

####

For more information, please click here

Contacts:
Writer: Kayla Wiles, 765-494-2432,

Sources: Roberto Merlin,

Vlad Shalaev, 765-494-9855,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Imaging

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Possible Futures

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Arrowhead Pharmaceuticals Presents Late-Breaking Preliminary Clinical Data on ARO-HBV at Liver Meeting® 2018 November 9th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Chip Technology

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Announcements

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Tools

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Oil industry supply company, Scale Protection based in Norway use the Deben SEM motorised stage in their benchtop SEM for the analysis of particulates on filters collected from oil well water October 23rd, 2018

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Military

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

A bullet-proof heating pad November 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project