Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound

“To be able to see the inner workings of the basic units of all matter is truly amazing, and it’s one of the main objectives we have pursued at CaSTL for more than a decade,” says study co-author Ara Apkarian, director of UCI’s Center for Chemistry at the Space-Time Limit. Daniel A. Anderson / UCI
“To be able to see the inner workings of the basic units of all matter is truly amazing, and it’s one of the main objectives we have pursued at CaSTL for more than a decade,” says study co-author Ara Apkarian, director of UCI’s Center for Chemistry at the Space-Time Limit. Daniel A. Anderson / UCI

Abstract:
Notorious asphyxiator carbon monoxide has few true admirers, but it’s favored by University of California, Irvine scientists who use it to study other molecules.

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound

Riverside, CA | Posted on October 2nd, 2018

With the aid of a scanning tunneling microscope, researchers in UCI’s Center for Chemistry at the Space-Time Limit employed the diatomic compound as a sensor and transducer to probe and image samples, gaining an unprecedented amount of information about their structures, bonds and electrical fields. The findings were published in Science Advances.

“We used this technique to map, with sub-molecular spatial resolution, the chemical information inside one molecule,” said co-author V. Ara Apkarian, CaSTL director and UCI professor of chemistry. “To be able to see the inner workings of the basic units of all matter is truly amazing, and it’s one of the main objectives we have pursued at CaSTL for more than a decade.”

To achieve these results, CaSTL scientists attached a single carbon monoxide molecule to the end of a sharp silver needle inside the scope. They illuminated the tip with a laser and tracked the vibrational frequency of the attached CO bond through the so-called Raman effect, which leads to changes in the color of light scattered from the junction.

The effect is feeble, only one part per billion or so, according to Kumar Wickramasinghe, a UCI professor of electrical engineering & computer science and veteran CaSTL faculty member who was not involved in this study. But the tip of the needle in the scanning tunneling microscope acts like a lightning rod, amplifying the signal by 12 orders of magnitude. By recording small changes in the vibrational frequency of the CO bond as it approached targeted molecules, the researchers were able to map out molecular shapes and characteristics due to variations in electric charges within a molecule.

The probed molecules in the experiments were metalloporphyrins, compounds found in human blood and plant chlorophyll that are exploited extensively in display technologies.

The captured images provided unprecedented detail about the target metalloporphyrin, including its charge, intramolecular polarization, local photoconductivity, atomically resolved hydrogen bonds and surface electron density waves – the forces that dictate the functionality and structural transformation of molecules. In other words, chemistry.

“Professor Apkarian and his group have, for the first time, created an instrument that can map local electric fields at the sub-molecular level,” said Wickramasinghe, who, as a fellow at IBM, was one of the principal inventors of the world’s earliest atomic force microscope. “The major step the team has taken is to have made it possible to map the electric field distributions inside a single molecule using the Raman effect, which is a remarkable achievement.”

According to lead author Joonhee Lee, CaSTL research chemist, one of the key results of the experiments was the elucidation of the electrostatic potential surface of the metalloporphyrin molecule – basically, its functional shape, which until recently had been a theoretical construct. He said the ability to determine this will be particularly beneficial in future studies of macromolecules, such as proteins.

This work is very much in the realm of pure, fundamental science research, Lee notes, but he thinks there may be some practical applications for single-molecule electromechanical systems in the near future.

“Microelectromechanical systems are deployed in current technologies such as smartphones. They take their name from the micron-size scale of such devices; one micron is one-hundredth the size of a human hair,” Lee said. “Single-molecule electromechanical systems are 10,000 times smaller. Imagine if our miniaturized devices used circuits on that scale.”

The CaSTL project was supported by the National Science Foundation.

####

About University of California - Riverside
About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. It’s located in one of the world’s safest and most economically vibrant communities and is Orange County’s second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit www.uci.edu

For more information, please click here

Contacts:
Brian Bell

949-824-8249

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Imaging

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Better microring sensors for optical applications May 10th, 2019

Possible Futures

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

MEMS

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Mirrorcle laser-cuts ribbon on cleanroom facility for volume MEMS mirror production November 26th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

Chip Technology

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Nanomedicine

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Sensors

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Discoveries

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Announcements

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Nanometrics and Rudolph Announce Merger Agreement to Create a Premier Semiconductor Process Control Company June 24th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Tools

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam June 14th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

nPoint piezo driven nanopositioning flexure stages now available from Elliot Scientific June 4th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project