Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > All wired up: New molecular wires for single-molecule electronic devices

The proposed wire is 'doped' with a ruthenium unit that enhances its conductance to unprecedented levels compared with previously reported similar molecular wires.

CREDIT
Journal of the American Chemical Society
The proposed wire is 'doped' with a ruthenium unit that enhances its conductance to unprecedented levels compared with previously reported similar molecular wires. CREDIT Journal of the American Chemical Society

Abstract:
Scientists at Tokyo Institute of Technology designed a new type of molecular wire doped with organometallic ruthenium to achieve unprecedentedly higher conductance than earlier molecular wires. The origin of high conductance in these wires is fundamentally different from similar molecular devices and suggests a potential strategy for developing highly conducting "doped" molecular wires.

All wired up: New molecular wires for single-molecule electronic devices

Tokyo, Japan | Posted on August 31st, 2018

Since their conception, researchers have tried to shrink electronic devices to unprecedented sizes, even to the point of fabricating them from a few molecules. Molecular wires are one of the building blocks of such minuscule contraptions, and many researchers have been developing strategies to synthesize highly conductive, stable wires from carefully designed molecules.

A team of researchers from Tokyo Institute of Technology, including Yuya Tanaka, designed a novel molecular wire in the form of a metal electrode-molecule-metal electrode (MMM) junction including a polyyne, an organic chain-like molecule, "doped" with a ruthenium-based unit Ru(dppe)2. The proposed design, featured in the cover of the Journal of the American Chemical Society, is based on engineering the energy levels of the conducting orbitals of the atoms of the wire, considering the characteristics of gold electrodes.

Using scanning tunneling microscopy, the team confirmed that the conductance of these molecular wires was equal to or higher than those of previously reported organic molecular wires, including similar wires "doped" with iron units. Motivated by these results, the researchers then went on to investigate the origin of the proposed wire's superior conductance. They found that the observed conducting properties were fundamentally different from previously reported similar MMM junctions and were derived from orbital splitting. In other words, orbital splitting induces changes in the original electron orbitals of the atoms to define a new "hybrid" orbital facilitating electron transfer between the metal electrodes and the wire molecules. According to Tanaka, "such orbital splitting behavior has rarely been reported for any other MMM junction".

Since a narrow gap between the highest (HOMO) and lowest (LUMO) occupied molecular orbitals is a crucial factor for enhancing conductance of molecular wires, the proposed synthesis protocol adopts a new technique to exploit this knowledge, as Tanaka adds "The present study reveals a new strategy to realize molecular wires with an extremely narrow HOMO?LUMO gap via MMM junction formation."

This explanation for the fundamentally different conducting properties of the proposed wires facilitate the strategic development of novel molecular components, which could be the building blocks of future minuscule electronic devices.

###

####

For more information, please click here

Contacts:
Emiko Kawaguchi

81-357-342-975

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Hardware

Picosunís ALD encapsulation prevents electronics degradation February 15th, 2019

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Letiís Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

Possible Futures

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Molecular Machines

Kanazawa University research: A closed cage-like molecule that can be opened January 22nd, 2019

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

Molecular Nanotechnology

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

Chip Technology

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Picosunís ALD encapsulation prevents electronics degradation February 15th, 2019

Nanoelectronics

Large, stable pieces of graphene produced with unique edge pattern: Breakthrough in graphene research February 1st, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Discoveries

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Announcements

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project