Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A Novel Graphene Quantum Dot Structure Takes the Cake

Scanning tunneling spectroscopy image shows that magnetically confined electrons are arranged in a wedding cake-like structure of energy levels, known as Landau levels, labeled as ll (top panel). Electrons confined to those levels create a series of insulating and conducting rings within graphene (bottom panel).

Credit: NIST
Scanning tunneling spectroscopy image shows that magnetically confined electrons are arranged in a wedding cake-like structure of energy levels, known as Landau levels, labeled as ll (top panel). Electrons confined to those levels create a series of insulating and conducting rings within graphene (bottom panel). Credit: NIST

Abstract:
In a marriage of quantum science and solid-state physics, researchers at the National Institute of Standards and Technology (NIST) have used magnetic fields to confine groups of electrons to a series of concentric rings within graphene, a single layer of tightly packed carbon atoms.

A Novel Graphene Quantum Dot Structure Takes the Cake

Gaithersburg, MD | Posted on August 24th, 2018

This tiered “wedding cake,” which appears in images that show the energy level structure of the electrons, experimentally confirms how electrons interact in a tightly confined space according to long-untested rules of quantum mechanics. The findings could also have practical applications in quantum computing.

Graphene is a highly promising material for new electronic devices because of its mechanical strength, its excellent ability to conduct electricity and its ultrathin, essentially two-dimensional structure. For these reasons, scientists welcome any new insights on this wonder material.

The researchers, who report their findings in the Aug. 24 issue of Science, began their experiment by creating quantum dots—tiny islands that act as artificial atoms—in graphene devices cooled to just a few degrees above absolute zero.

Electrons orbit quantum dots in a way that’s very similar to how they orbit atoms. Like rungs on a ladder, they can only occupy specific energy levels according to the rules of quantum theory. But something special happened when the researchers applied a magnetic field, which further confined the electrons orbiting the quantum dot. When the applied field reached a strength of about 1 Tesla (some 100 times the typical strength of a small bar magnet), the electrons packed closer together and interacted more strongly.

As a result, the electrons rearranged themselves into a novel pattern: an alternating series of conducting and insulating concentric rings on the surface. When the researchers stacked images of the concentric rings recorded at different electron energy levels, the resulting picture resembled a wedding cake, with electron energy as the vertical dimension.

A scanning tunneling microscope, which images surfaces with atomic-scale resolution by recording the flow of electrons between different regions of the sample and the ultrasharp tip of the microscope’s stylus, revealed the structure.

“This is a textbook example of a problem—determining what the combined effect of spatial and magnetic confinement of electrons looks like—that you solve on paper when you’re first exposed to quantum mechanics, but that no one’s actually seen before,” said NIST scientist and co-author Joseph Stroscio. “The key is that graphene is a truly two-dimensional material with an exposed sea of electrons at the surface,” he added. “In previous experiments using other materials, quantum dots were buried at material interfaces so no one had been able to look inside them and see how the energy levels change when a magnetic field was applied.”

Graphene quantum dots have been proposed as fundamental components of some quantum computers.

“Since we see this behavior begin at moderate fields of just about 1 Tesla, it means that these electron-electron interactions will have to be carefully accounted for when considering certain types of graphene quantum dots for quantum computation,” said study co-author Christopher Gutiérrez, now at the University of British Columbia in Vancouver, who performed the experimental work at NIST with co-authors Fereshte Ghahari and Daniel Walkup of NIST and the University of Maryland.

This achievement also opens possibilities for graphene to act as what the researchers call a “relativistic quantum simulator.” The theory of relativity describes how objects behave when moving at or close to light speed. And electrons in graphene possess an unusual property—they move as if they are massless, like particles of light. Although electrons in graphene actually travel far slower than the speed of light, their light-like massless behavior has earned them the moniker of “relativistic” matter. The new study opens the door to creating a table-top experiment to study strongly confined relativistic matter.

Collaborators on this work included researchers from the Massachusetts Institute of Technology, Harvard University, the University of Maryland NanoCenter and the National Institute for Material Science in Ibaraki, Japan.

The measurements suggest that scientists may soon find even more exotic structures produced by the interactions of electrons confined to solid-state materials at low temperatures.

####

For more information, please click here

Contacts:
Ben P. Stein

(301) 975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: Christopher Gutiérrez, Daniel Walkup, Fereshte Ghahari, Cyprian Lewandowski, Joaquin F. Rodriguez-Nieva, Kenji Watanabe, Takashi Taniguchi, Leonid S. Levitov, Nikolai B. Zhitenev and Joseph A. Stroscio. Interaction Driven Quantum Hall Wedding cake-like Structures in Graphene Quantum Dots. Science. Published August 24, 2018. DOI: 10.1126/science.aar2014:

Related News Press

Quantum Physics

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

An important step towards completely secure quantum communication networks November 30th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

News and information

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Graphene/ Graphite

These small caps are tapping a graphene market that has more than doubled in a year December 1st, 2018

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance November 30th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

Laboratories

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Nanotech Artisans Sculpt with DNA November 5th, 2018

2 Dimensional Materials

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Govt.-Legislation/Regulation/Funding/Policy

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

French Researchers Extend Reach of Mass Spectrometry with Nanomechanical Resonators: Neutral Mass Spectrometry’ Fills Gap In Existing Weighing Technologies November 27th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Possible Futures

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

Chip Technology

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

Quantum Computing

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

USC scientists find a way to enhance the performance of quantum computers: The method has the potential to solve some of society's biggest challenges November 30th, 2018

An important step towards completely secure quantum communication networks November 30th, 2018

Materials/Metamaterials

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Announcements

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

180 Degree Capital Corp.’s Portfolio Company, TheStreet, Inc., Agrees to Sell Its Institutional Business Units to Euromoney Institutional Investor PLC for $87.3 Million December 6th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

Quantum Dots/Rods

Machine learning helps improving photonic applications September 28th, 2018

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Research partnerships

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Researchers create new 'smart' material with potential biomedical, environmental uses November 23rd, 2018

Cea-Leti and imec Launch Strategic Partnership to Develop AI and Quantum Computing November 23rd, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Quantum nanoscience

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

Quantum mechanics work lets oil industry know promise of recovery experiments September 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project