Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > How hot is Schrödinger's coffee?

Abstract:
A new uncertainty relation, linking the precision with which temperature can be measured and quantum mechanics, has been discovered at the University of Exeter.

How hot is Schrödinger's coffee?

Exeter, UK | Posted on August 15th, 2018

If you measure the temperature of your coffee with a standard over-the counter thermometer you may find 90°C give or take 0.5°C. The temperature uncertainty in your reading arises because the mercury level in the thermometer fluctuates a little bit, due to microscopic collisions of the mercury atoms.

Things become more interesting when trying to measure the temperature of small objects, such as nanometer devices or single cells. To obtain precise measurements one needs to use tiny nanoscale thermometers made up of just a few atoms.

The team at Exeter has developed a new theoretical framework that allows the characterisation of small-scale thermometers and establishes their ultimate achievable accuracy. It turns out that under certain circumstances the uncertainty in temperature readings are prone to additional fluctuations, which arise because of quantum effects.

Specifically, tiny thermometers can be in a superposition between different temperatures, e.g. 90.5°C and 89.5°C, just like Schrödinger's cat can be in a superposition between being dead and alive.

This research is published in the leading scientific journal Nature Communications.

Harry Miller, first author of the paper and from Exeter's Physics and Astronomy department explains: "In addition to thermal noise that is present when making a temperature measurement, the possibility of being in a superposition means that quantum fluctuations influence of how we observe temperature at the nanoscale".

The discovery establishes a new connection between quantum uncertainty, arising from such superposition states, and the accuracy of temperature measurements. In the future this uncertainty relation will be useful for experimentalists to design optimal nanoscale thermometers that take into account the effects of quantum mechanics.

Dr Janet Anders, co-author of the paper and a Senior Lecturer at the University of Exeter added: "This finding is an important step for extending thermodynamic concepts and laws to the nanoscale, where our macroscopic assumptions break down".

###

Energy-temperature uncertainty relation in quantum thermodynamics is published in Nature Communications. It was funded by the Engineering and Physical Sciences Research Council and the Royal Society.

####

For more information, please click here

Contacts:
Duncan Sandes

44-013-927-22391

Copyright © University of Exeter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

Physics

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Quantum Physics

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Possible Futures

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Discoveries

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Announcements

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Quantum nanoscience

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

A quantum magnet with a topological twist: Materials with a kagome lattice pattern exhibit 'negative magnetism' and long-sought 'flat-band' electrons February 23rd, 2019

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project