Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Lining Up the Surprising Behaviors of a Superconductor with One of the World's Strongest Magnets

This composite image offers a glimpse inside the custom-designed molecular beam epitaxy system that the Brookhaven physicists use to create single-crystal thin films for studying the properties of superconducting cuprates.
This composite image offers a glimpse inside the custom-designed molecular beam epitaxy system that the Brookhaven physicists use to create single-crystal thin films for studying the properties of superconducting cuprates.

Abstract:
Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way—a finding that could help direct the search for materials that can perfectly conduct electricity at room temperature.

Lining Up the Surprising Behaviors of a Superconductor with One of the World's Strongest Magnets

Upton, NY | Posted on August 8th, 2018

What happens when really powerful magnets—capable of producing magnetic fields nearly two million times stronger than Earth's—are applied to materials that have a "super" ability to conduct electricity when chilled by liquid nitrogen? A team of scientists set out to answer this question in one such superconductor made of the elements lanthanum, strontium, copper, and oxygen (LSCO). They discovered that the electrical resistance of this copper-oxide compound, or cuprate, changes in an unusual way when very high magnetic fields suppress its superconductivity at low temperatures.

"The most pressing problem in condensed matter physics is understanding the mechanism of superconductivity in cuprates because at ambient pressure they become superconducting at the highest temperature of any currently known material," said physicist Ivan Bozovic, who leads the Oxide Molecular Beam Epitaxy Group [ https://www.bnl.gov/cmpmsd/mbe/ ] at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and who is a coauthor of the Aug. 3 Science paper reporting the discovery. "This new result—that the electrical resistivity of LSCO scales linearly with magnetic field strength at low temperatures—provides further evidence that high-temperature superconductors do not behave like ordinary metals or superconductors. Once we can come up with a theory to explain their unusual behavior, we will know whether and where to search for superconductors that can carry large amounts of electrical current at higher temperatures, and perhaps even at room temperature."

Cuprates such as LSCO are normally insulators. Only when they are cooled to some hundred degrees below zero and the concentrations of their chemical composition are modified (a process called doping) to a make them metallic can their mobile electrons pair up to form a "superfluid" that flows without resistance. Scientists hope that understanding how cuprates achieve this amazing feat will enable them to develop room-temperature superconductors, which would make energy generation and delivery significantly more efficient and less expensive.

In 2016, Bozovic's group reported [ https://www.bnl.gov/newsroom/news.php?a=111864 ] that LSCO's superconducting state is nothing like the one explained by the generally accepted theory of classical superconductivity; it depends on the number of electron pairs in a given volume rather than the strength of the electron pairing interaction. In a follow-up experiment [ https://www.bnl.gov/newsroom/news.php?a=112383 ] published the following year, they obtained another puzzling result: when LSCO is in its non-superconducting (normal, or "metallic") state, its electrons do not behave as a liquid, as would be expected from the standard understanding of metals.

"The condensed matter physics community has been divided about this most basic question: do the behaviors of cuprates fall within existing theories for superconductors and metals, or are there profoundly different physical principles involved?" said Bozovic.

Continuing this comprehensive multipart study that began in 2005, Bozovic's group and collaborators have now found additional evidence to support the latter idea that the existing theories are incomplete. In other words, it is possible that these theories do not encompass every known material. Maybe there are two different types of metals and superconductors, for example.

"This study points to another property of the strange metallic state in the cuprates that is not typical of metals: linear magnetoresistance at very high magnetic fields," said Bozovic. "At low temperatures where the superconducting state is suppressed, the electrical resistivity of LSCO scales linearly (in a straight line) with the magnetic field; in metals, this relationship is quadratic (forms a parabola)."

In order to study magnetoresistance, Bozovic and group members Anthony Bollinger, Xi He, and Jie Wu first had to create flawless single-crystal thin films of LSCO near its optimal doping level. They used a technique called molecular beam epitaxy, in which separate beams containing atoms of the different chemical elements are fired onto a heated single-crystal substrate. When the atoms land on the substrate surface, they condense and slowly grow into ultra-thin layers, building a single atomic layer at a time. The growth of the crystal occurs in highly controlled conditions of ultra-high vacuum to ensure that the samples do not get contaminated.

"Brookhaven Lab's key contribution to this study is this material synthesis platform," said Bozovic. "It allows us to tailor the chemical composition of the films for different studies and provides the foundation for us to observe the true properties of superconducting materials, as opposed to properties induced by sample defects or impurities."

The scientists then patterned the thin films onto strips containing voltage leads so that the amount of electrical current flowing through LSCO under an applied magnetic field could be measured.

They conducted initial magnetoresistivity measurements with two 9 Tesla magnets at Brookhaven Lab—for reference, the strength of the magnets used in today's magnetic resonance imaging (MRI) machines are typically up to 3 Tesla. Then, they brought their best samples (those with the best structural and transport qualities) to the Pulsed Field Facility [ https://nationalmaglab.org/user-facilities/pulsed-field-facility ]. Located at DOE's Los Alamos National Laboratory, this international user facility is part of the National High Magnetic Field Laboratory [https://nationalmaglab.org/], which houses some of the strongest magnets in the world. Scientists at the Pulsed Field Facility placed the samples in an 80 Tesla pulsed magnet [ https://nationalmaglab.org/about/maglab-dictionary/pulsed-magnet ], powered by quick pulses, or shots, of electrical current. The magnet produces such large magnetic fields that it cannot be energized for more than a very short period of time (microseconds to a fraction of a second) without destroying itself.

"This large magnet, which is the size of a room and draws the electricity of a small city, is the only such installation on this continent," said Bozovic. "We only get access to it once a year if we are lucky, so we chose our best samples to study."

In October, the scientists will get access to a stronger (90 Tesla) magnet, which they will use to collect additional magnetoresistance data to see if the linear relationship still holds.

"While I do not expect to see something different, this higher field strength will allow us to expand the range of doping levels at which we can suppress superconductivity," said Bozovic. "Collecting more data over a broader range of chemical compositions will help theorists formulate the ultimate theory of high-temperature superconductivity in cuprates."

In the next year, Bozovic and the other physicists will collaborate with theorists to interpret the experimental data.

"It appears that the strongly correlated motion of electrons is behind the linear relationship we observed," said Bozovic. "There are various ideas of how to explain this behavior, but at this point, I would not single out any of them."

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov [http://science.energy.gov/].

Follow @BrookhavenLab on Twitter [ https://twitter.com/BrookhavenLab] or find us on Facebook [https://www.facebook.com/brookhavenlab/ ].

For more information, please click here

Contacts:
Ariana Tantillo
(631) 344-2347

or Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Scale-invariant magnetoresistance in a cuprate superconductor":

Related News Press

News and information

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Amazingly 'green' synthesis method for high-tech dyes: Dyes that are also of great interest for organic electronics have recently been prepared and crystallised at TU Wien. All that is required is just water, albeit under highly unusual conditions. August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Superconductivity

Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3 August 10th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Laboratories

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch August 9th, 2018

Relax, just break it July 20th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Flipping the switch on supramolecular electronics August 14th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Possible Futures

How hot is Schrödinger's coffee? August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Discoveries

How hot is Schrödinger's coffee? August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Announcements

How hot is Schrödinger's coffee? August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

How hot is Schrödinger's coffee? August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project