Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Changing the grocery game: Manufacturing process provides low-cost, sustainable option for food packaging

This photo shows nanocellulose-coated PET film. Purdue University researchers created a new manufacturing process using cellulose nanocrystals as advanced barrier coatings for food packaging. (Image provided)
This photo shows nanocellulose-coated PET film. Purdue University researchers created a new manufacturing process using cellulose nanocrystals as advanced barrier coatings for food packaging. (Image provided)

Abstract:
Purdue University researchers have developed a large-scale manufacturing process that may change the way some grocery store foods are packaged.

Changing the grocery game: Manufacturing process provides low-cost, sustainable option for food packaging

West Lafayette, IN | Posted on June 26th, 2018

According to Credence Research, food packaging is a growing billion-dollar market, and overall predicted growth is expected to reach 6 percent by 2024. Advanced barrier coatings, which help to protect grocery items such as foods and beverages, are growing by as much as 45 percent each year.

The Purdue team, led by Jeffrey Youngblood, a professor in Purdue’s School of Materials Engineering, created a new manufacturing process using cellulose nanocrystals as advanced barrier coatings for food packaging.

CNCs are an alternative renewable raw material derived from abundant resources such as wood and plants. They have properties including nontoxicity, biodegradability, high specific strength, high thermal conductivity and optical transparency, all of which make them excellent components for advanced food packaging.

“The challenge for the food packaging industry is to create a recyclable and sustainable barrier material that is low-cost,” Youngblood said. “Our innovation using CNC coatings is transparent, nontoxic and sustainable.”

The Purdue manufacturing technique also is scalable since it is a roll-to-roll manufacturing process using waterborne polymer systems. CNCs are highly crystalline and easily dispersed in water, so manufacturers can control the structure to eliminate free volume and end up with only the properties that are needed for the barrier material.

“Our unique process uses the power of natural nanotechnology and allows a much higher density and packing coating that reduces diffusion pathways and drastically improves oxygen, carbon dioxide and water vapor permeability,” Youngblood said. “In essence, we get properties similar to common packaging such as ethylene-vinyl alcohol polymer, but with more sustainable results.”

The Purdue technology also offers food packaging manufacturers excellent optical, thermal and mechanical properties to ensure that food remains as fresh as possible when it is delivered to the grocery store for consumers.

“Technological advances such as this are important as there is a larger societal effort to improve sustainability,” Youngblood said. “CNC offers this, along with transparency, nontoxicity and high barrier performance.”

The Purdue Office of Technology Commercialization helped secure a patent for the technology. It is available for licensing.

####

About Purdue University
About Purdue Office of Technology Commercialization

The Purdue Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities. For more information about funding and investment opportunities in startups based on a Purdue innovation, contact the Purdue Foundry at For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University.


For more information, please click here

Contacts:
Purdue Research Foundation contact:
Chris Adam
765-588-3341


Source:
Jeffrey Youngblood

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Possible Futures

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Discoveries

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Announcements

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Patents/IP/Tech Transfer/Licensing

Sheaths drive powerful new artificial muscles July 11th, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Food/Agriculture/Supplements

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

A Deep tech startup is disrupting dairy industry in Chennai Demo Day at IIT-Madras Research Park February 20th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project