Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Mapping battery materials with atomic precision: Berkeley Lab researchers map the atoms of battery materials and explored how composition affects structure

Atomic resolution scanning transmission electron microscopy images and electron diffraction patterns, arranged on a rendering of a battery, show how the structure of lithium-rich and manganese-rich transition metal oxides used inside battery cathodes changes with composition. The images also show how the surface of the cathode has a different structure than the interior.
CREDIT
Lawrence Berkeley National Laboratory
Atomic resolution scanning transmission electron microscopy images and electron diffraction patterns, arranged on a rendering of a battery, show how the structure of lithium-rich and manganese-rich transition metal oxides used inside battery cathodes changes with composition. The images also show how the surface of the cathode has a different structure than the interior. CREDIT Lawrence Berkeley National Laboratory

Abstract:
Lithium-ion batteries are widely used in home electronics and are now being used to power electric vehicles and store energy for the power grid. But their limited number of recharge cycles and tendency to degrade in capacity over their lifetime have spurred a great deal of research into improving the technology.

Mapping battery materials with atomic precision: Berkeley Lab researchers map the atoms of battery materials and explored how composition affects structure

Berkeley, CA | Posted on March 8th, 2018

An international team led by researchers from the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) used advanced techniques in electron microscopy to show how the ratio of materials that make up a lithium-ion battery electrode affects its structure at the atomic level, and how the surface is very different from the rest of the material. The work was published in the journal Energy & Environmental Science.

Knowing how the internal and surface structure of a battery material changes over a wide range of chemical compositions will aid future studies on cathode transformations and could also lead to the development of new battery materials.

"This finding could change the way we look at phase transformations within the cathode and the resulting loss of capacity in this class of material," said Alpesh Khushalchand Shukla, a scientist at Berkeley Lab's Molecular Foundry, and lead author of the study. "Our work shows that it is extremely important to completely characterize a new material in its pristine state, as well as after cycling, in order to avoid misinterpretations."

Previous work by researchers at the Molecular Foundry, a research center specializing in nanoscale science, revealed the structure of cathode materials containing "excess" lithium, resolving a longstanding debate.

Using a suite of electron microscopes both at the National Center for Electron Microscopy (NCEM), a Molecular Foundry facility, and at SuperSTEM, the National Research Facility for Advanced Electron Microscopy in Daresbury, U.K., the research team found that while the atoms throughout the interior of the cathode material remained in the same structural pattern across all compositions, decreasing the amount of lithium caused an increase in randomness in the position of certain atoms within the structure.

By comparing different compositions of cathode material to battery performance, the researchers also demonstrated it was possible to optimize battery performance in relation to capacity by using a lower ratio of lithium to other metals.

The most surprising finding was that the surface structure of an unused cathode is very different from the interior of the cathode. A thin layer of material on the surface possessing a different structure, called the "spinel" phase, was found in all of their experiments. Several previous studies had overlooked that this layer might be present on both new and used cathodes.

By systematically varying the ratio of lithium to a transition metal, like trying different amounts of ingredients in a new cookie recipe, the research team was able to study the relationship between the surface and interior structure and to measure the electrochemical performance of the material. The team took images of each batch of the cathode materials from multiple angles and created complete, 3-D renderings of each structure.

"Obtaining such precise, atomic-level information over length scales relevant to battery technologies was a challenge," said Quentin Ramasse, Director of the SuperSTEM Laboratory. "This is a perfect example of why the multiple imaging and spectroscopy techniques available in electron microscopy make it such an indispensable and versatile tool in renewable energy research."

The researchers also used a newly developed technique called 4-D scanning transmission electron microscopy (4-D STEM). In transmission electron microscopy (TEM), images are formed after electrons pass through a thin sample. In conventional scanning transmission electrode microscopy (STEM), the electron beam is focused down to a very small spot (as small as 0.5 nanometers, or billionths of a meter, in diameter) and then that spot is scanned back and forth over the sample like a mower on a lawn.

The detector in conventional STEM simply counts how many electrons are scattered (or not scattered) in each pixel. However, in 4D-STEM, the researchers use a high-speed electron detector to record where each electron scatters, from each scanned point. It allows researchers to measure the local structure of their sample at high resolution over a large field of view.

"The introduction of high-speed electron cameras allows us to extract atomic-scale information from very large sample dimensions," said Colin Ophus, a research scientist at NCEM. "4D-STEM experiments mean we no longer need to make a tradeoff between the smallest features we can resolve and the field-of-view that we are observing - we can analyze the atomic structure of the entire particle at once."

###

Berkeley Lab's Molecular Foundry is a DOE Office of Science User.

This work was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Office of Basic Science, and Small Business Voucher Pilot Program; Envia Systems; and the U.K.'s Engineering and Physical Science Research Council.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov .

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Glenn Roberts Jr.

510-486-5582

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Laboratories

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Imaging

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Possible Futures

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Discoveries

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Materials/Metamaterials

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Mining for gold with a computer: Texas A&M team gleans new insights on key material May 3rd, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Announcements

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Tools

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

A micro-thermometer to record tiny temperature changes May 15th, 2018

Elastic microspheres expand understanding of embryonic development and cancer cells May 15th, 2018

Automotive/Transportation

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

Arbe Robotics Selects GLOBALFOUNDRIES for its High-Resolution Imaging Radar to Enable Safety for Autonomous Cars: Arbe Robotics’ proprietary chipset leverages GF’s 22FDX® technology to deliver industry’s first real-time 4D imaging radar for level 4 and 5 autonomous driving April 26th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Mining for gold with a computer: Texas A&M team gleans new insights on key material May 3rd, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Ultra-powerful batteries made safer, more efficient: Team aims to curb formation of harmful crystal-like masses in lithium metal batteries April 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project