Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > New method enables high-resolution measurements of magnetism

Abstract:
In a new article, published in Nature Materials, researchers from Beijing, Uppsala and Jülich have made significant progress allowing very high resolution magnetic measurements. With their method it is possible to measure magnetism of individual atomic planes.

New method enables high-resolution measurements of magnetism

Uppsala, Sweden | Posted on February 7th, 2018

Magnetic nanostructures are used in a wide range of applications. Most notably, to store bits of data in hard drives. These structures are becoming so small that the usual magnetic measurement methods fail to provide data with sufficient resolution.

Due to the ever-growing demand for more powerful electronic devices, the next generation spintronic components must have functional units that are only a few nanometers large. It is easier to build a new spintronic device, if we can see it in sufficient detail. This is becoming increasingly difficult with the rapid advance of nano-technologies. One instrument capable of such detailed imaging is the transmission electron microscope.

An electron microscope is a unique experimental tool offering scientists and engineers a wealth of information about all kinds of materials. As opposed to optical microscopes, it uses electrons to study the materials. This enables enormous magnifications. For example, in crystals one can routinely observe individual columns of atoms. Electron microscopes provide information about structure, composition and chemistry of materials. Recently, researchers also found ways to use electron microscopes to measure magnetic properties. However, atomic resolution has not yet been reached in this application.

Ján Rusz and Dmitry Tyutyunnikov at Uppsala University, together with colleagues from Tsinghua University, China, and Forschungszentrum Jülich in Germany have developed and experimentally proven a new method that allows magnetic measurements of individual atomic planes. The method uses a unique transmission electron microscope PICO that can correct both geometrical and chromatic aberrations, allowing a detailed look at individual atomic planes over a wide spectral range.

'The idea came from Dr. Xiaoyan Zhong, with whom we have a growing fruitful collaboration. We have contributed simulations, which have confirmed the validity of the experimental design and demonstrated that the experiment really offers a very detailed look at magnetism of materials,' says Ján Rusz.

####

For more information, please click here

Contacts:
Dr Jan Rusz

46-701-679-376

Copyright © Uppsala University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Imaging

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Better microring sensors for optical applications May 10th, 2019

Scientists explore the unknown behaviour of gold nanoparticles with neutrons April 23rd, 2019

Magnetism

2D insulators with ferromagnetism are rare; researchers just identified a new one May 10th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Possible Futures

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Memory Technology

Discovery may lead to new materials for next-generation data storage: Army-funded research demonstrates emergent chirality in polar skyrmions for the first time in oxide superlattices May 10th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Tools

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Nanoscale thermometers from diamond sparkles: A novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale has been developed May 3rd, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Nanometrics Announces Participation in Upcoming Investor Conferences May 3rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project