Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate

Photocatalytic overall pure-water splitting using the 2-D heterostructures of BP/BiVO4 without any sacrificial agents under visible light irradiation.

CREDIT
Osaka University
Photocatalytic overall pure-water splitting using the 2-D heterostructures of BP/BiVO4 without any sacrificial agents under visible light irradiation. CREDIT Osaka University

Abstract:
Hydrogen as a fuel source, rather than hydrocarbons like oil and coal, offers many benefits. Burning hydrogen produces harmless water with the potential to eliminate carbon dioxide emissions and their environmental burden. In pursuit of technologies that could lead to a breakthrough in achieving a hydrogen economy, a key issue is making hydrogen cheaply. Using catalysts to split water is the ideal way to generate hydrogen, but doing so usually requires an energy input from other chemicals, electricity, or a portion of sunlight which has high enough energy.

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate

Osaka, Japan | Posted on January 17th, 2018

Now researchers at Osaka University have developed a new catalytic system for efficiently splitting water and making hydrogen with energy from normal sunlight. Their study was recently reported in Angewandte Chemie International Edition.

"It has not been possible to use visible light for photocatalysis, but our approach of combining nanostructured black phosphorus for water reduction to hydrogen and bismuth vanadate for water oxidation to oxygen lets us make use of a wide range of the solar spectrum to make hydrogen and oxygen with unprecedented efficiency," lead author Mingshan Zhu says.

Black phosphorus has a flat, two-dimensional structure similar to that of graphene and strongly absorbs light across the whole of the visible spectrum. The researchers combined the black phosphorus with bismuth vanadate, which is a well-known water oxidation catalyst.

In the same way that plants shuttle electrons between different structures in natural photosynthesis to split water and make oxygen, the two components of this new catalyst could rapidly transfer electrons excited by sunlight. The amounts of the two components was also optimized in the catalyst, leading to production of hydrogen and oxygen gases in an ideal 2:1 ratio.

Coauthor Tetsuro Majima says, "The realization of hydrogen production powered by sunlight is the foundation of a hydrogen-oriented society. Our contribution overcomes a significant hurdle, but much work remains to be done to make hydrogen a practical fuel source in the future."

####

About Osaka University
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: http://resou.osaka-u.ac.jp/en/top

For more information, please click here

Contacts:
Saori Obayashi

81-661-055-886

Copyright © Osaka University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Possible Futures

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Materials/Metamaterials

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Computing faster with quasi-particles May 10th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Energy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

Automotive/Transportation

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Transforming waste heat into clean energy: Researchers use supercomputers to explore new materials for thermoelectric generation May 2nd, 2019

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project