Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries

Sandia National Laboratories researchers Forrest Gittleson, left, and Farid El Gabaly investigate the nanoscale chemistry of solid-state batteries, focusing on the region where electrodes and electrolytes make contact.
CREDIT
Dino Vournas
Sandia National Laboratories researchers Forrest Gittleson, left, and Farid El Gabaly investigate the nanoscale chemistry of solid-state batteries, focusing on the region where electrodes and electrolytes make contact. CREDIT Dino Vournas

Abstract:
Research at Sandia National Laboratories has identified a major obstacle to advancing solid-state lithium-ion battery performance in small electronics: the flow of lithium ions across battery interfaces.

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries

Livermore, CA | Posted on December 13th, 2017

Sandia's three-year Laboratory Directed Research and Development project investigated the nanoscale chemistry of solid-state batteries, focusing on the region where electrodes and electrolytes make contact. Most commercial lithium-ion batteries contain a liquid electrolyte and two solid electrodes, but solid-state batteries instead have a solid electrolyte layer, allowing them to last longer and operate more safely.

"The underlying goal of the work is to make solid-state batteries more efficient and to improve the interfaces between different materials," Sandia physicist Farid El Gabaly said. "In this project, all of the materials are solid; we don't have a liquid-solid interface like in traditional lithium-ion batteries."

The research was published in a Nano Letters paper titled, "Non-Faradaic Li+ Migration and Chemical Coordination across Solid-State Battery Interfaces." Authors include Sandia postdoctoral scientist Forrest Gittleson and El Gabaly. The work was funded by the Laboratory Directed Research and Development program, with supplemental funding by the Department of Energy's Office of Science.

El Gabaly explained that in any lithium battery, the lithium must travel back and forth from one electrode to the other when it is charged and discharged. However, the mobility of lithium ions is not the same in all materials and interfaces between materials are a major obstacle.

El Gabaly compares the work to figuring out how to make traffic move quickly through a busy intersection.

"For us, we are trying to reduce the traffic jam at the junction between two materials," he said.

El Gabaly likened the electrode-electrolyte interface to a tollbooth or merge on a freeway.

"We are essentially taking away the cash tolls and saying everybody needs to go through the fast track, so you're smoothing out or eliminating the slowdowns," he said. "When you improve the process at the interface you have the right infrastructure for vehicles to pass easily. You still have to pay, but it is faster and more controlled than people searching for coins in the glove box."

There are two important interfaces in solid state batteries, he explained, at the cathode-electrolyte junction and electrolyte-anode junction. Either could be dictating the performance limits of a full battery.

Gittleson adds, "When we identify one of these bottlenecks, we ask, 'Can we modify it?' And then we try to change the interface and make the chemical processes more stable over time."

Sandia's interest in solid-state batteries

El Gabaly said Sandia is interested in the research mainly because solid-state batteries are low maintenance, reliable and safe. Liquid electrolytes are typically reactive, volatile and highly flammable and are a leading cause of commercial battery failure. Eliminating the liquid component can make these devices perform better.

"Our focus wasn't on large batteries, like in electric vehicles," El Gabaly said. "It was more for small or integrated electronics."

Since Sandia's California laboratory did not conduct solid-state battery research, the project first built the foundation to prototype batteries and examine interfaces.

"This sort of characterization is not trivial because the interfaces that we are interested in are only a few atomic layers thick," Gittleson said. "We use X-rays to probe the chemistry of those buried interfaces, seeing through only a few nanometers of material. Though challenging to design experiments, we have been successful in probing those regions and relating the chemistry to full battery performance."

Processing the research

The research was conducted using materials that have been used in previous proof-of-concept solid-state batteries.

"Since these materials are not produced on a massive commercial scale, we needed to be able to fabricate full devices on-site," El Gabaly said. "We sought methods to improve the batteries by either inserting or changing the interfaces in various ways or exchanging materials."

The work used pulsed laser deposition and X-ray photoelectron spectroscopy combined with electrochemical techniques. This allowed very small-scale deposition since the batteries are thin and integrated on a silicon wafer.

"Using this method, we can engineer the interface down to the nanometer or even subnanometer level," Gittleson said, adding that hundreds of samples were created.

Building batteries in this way allowed the researchers to get a precise view of what that interface looks like because the materials can be assembled so controllably.

The next phase of the research is to improve the performance of the batteries and to assemble them alongside other Sandia technologies.

"We can now start combining our batteries with LEDs, sensors, small antennas or any number of integrated devices," El Gabaly said. "Even though we are happy with our battery performance, we can always try to improve it more."

####

About Sandia National Labratories
Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

For more information, please click here

Contacts:
Michael Padilla

925-294-2447

Copyright © Sandia National Labratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project