Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries

Sandia National Laboratories researchers Forrest Gittleson, left, and Farid El Gabaly investigate the nanoscale chemistry of solid-state batteries, focusing on the region where electrodes and electrolytes make contact.
CREDIT
Dino Vournas
Sandia National Laboratories researchers Forrest Gittleson, left, and Farid El Gabaly investigate the nanoscale chemistry of solid-state batteries, focusing on the region where electrodes and electrolytes make contact. CREDIT Dino Vournas

Abstract:
Research at Sandia National Laboratories has identified a major obstacle to advancing solid-state lithium-ion battery performance in small electronics: the flow of lithium ions across battery interfaces.

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries

Livermore, CA | Posted on December 13th, 2017

Sandia's three-year Laboratory Directed Research and Development project investigated the nanoscale chemistry of solid-state batteries, focusing on the region where electrodes and electrolytes make contact. Most commercial lithium-ion batteries contain a liquid electrolyte and two solid electrodes, but solid-state batteries instead have a solid electrolyte layer, allowing them to last longer and operate more safely.

"The underlying goal of the work is to make solid-state batteries more efficient and to improve the interfaces between different materials," Sandia physicist Farid El Gabaly said. "In this project, all of the materials are solid; we don't have a liquid-solid interface like in traditional lithium-ion batteries."

The research was published in a Nano Letters paper titled, "Non-Faradaic Li+ Migration and Chemical Coordination across Solid-State Battery Interfaces." Authors include Sandia postdoctoral scientist Forrest Gittleson and El Gabaly. The work was funded by the Laboratory Directed Research and Development program, with supplemental funding by the Department of Energy's Office of Science.

El Gabaly explained that in any lithium battery, the lithium must travel back and forth from one electrode to the other when it is charged and discharged. However, the mobility of lithium ions is not the same in all materials and interfaces between materials are a major obstacle.

El Gabaly compares the work to figuring out how to make traffic move quickly through a busy intersection.

"For us, we are trying to reduce the traffic jam at the junction between two materials," he said.

El Gabaly likened the electrode-electrolyte interface to a tollbooth or merge on a freeway.

"We are essentially taking away the cash tolls and saying everybody needs to go through the fast track, so you're smoothing out or eliminating the slowdowns," he said. "When you improve the process at the interface you have the right infrastructure for vehicles to pass easily. You still have to pay, but it is faster and more controlled than people searching for coins in the glove box."

There are two important interfaces in solid state batteries, he explained, at the cathode-electrolyte junction and electrolyte-anode junction. Either could be dictating the performance limits of a full battery.

Gittleson adds, "When we identify one of these bottlenecks, we ask, 'Can we modify it?' And then we try to change the interface and make the chemical processes more stable over time."

Sandia's interest in solid-state batteries

El Gabaly said Sandia is interested in the research mainly because solid-state batteries are low maintenance, reliable and safe. Liquid electrolytes are typically reactive, volatile and highly flammable and are a leading cause of commercial battery failure. Eliminating the liquid component can make these devices perform better.

"Our focus wasn't on large batteries, like in electric vehicles," El Gabaly said. "It was more for small or integrated electronics."

Since Sandia's California laboratory did not conduct solid-state battery research, the project first built the foundation to prototype batteries and examine interfaces.

"This sort of characterization is not trivial because the interfaces that we are interested in are only a few atomic layers thick," Gittleson said. "We use X-rays to probe the chemistry of those buried interfaces, seeing through only a few nanometers of material. Though challenging to design experiments, we have been successful in probing those regions and relating the chemistry to full battery performance."

Processing the research

The research was conducted using materials that have been used in previous proof-of-concept solid-state batteries.

"Since these materials are not produced on a massive commercial scale, we needed to be able to fabricate full devices on-site," El Gabaly said. "We sought methods to improve the batteries by either inserting or changing the interfaces in various ways or exchanging materials."

The work used pulsed laser deposition and X-ray photoelectron spectroscopy combined with electrochemical techniques. This allowed very small-scale deposition since the batteries are thin and integrated on a silicon wafer.

"Using this method, we can engineer the interface down to the nanometer or even subnanometer level," Gittleson said, adding that hundreds of samples were created.

Building batteries in this way allowed the researchers to get a precise view of what that interface looks like because the materials can be assembled so controllably.

The next phase of the research is to improve the performance of the batteries and to assemble them alongside other Sandia technologies.

"We can now start combining our batteries with LEDs, sensors, small antennas or any number of integrated devices," El Gabaly said. "Even though we are happy with our battery performance, we can always try to improve it more."

####

About Sandia National Labratories
Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

For more information, please click here

Contacts:
Michael Padilla

925-294-2447

Copyright © Sandia National Labratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Laboratories

Laboratory Management Web Application Goes Nationwide January 9th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Automotive/Transportation

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Novel MOF shell-derived surface modification of Li-rich layered oxide cathode December 29th, 2017

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project